File size: 16,326 Bytes
f5ee954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1985d41
 
f5ee954
 
8dcffda
 
 
 
 
 
 
b47d208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5ee954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dcffda
f5ee954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dcffda
f5ee954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64286ff
8dcffda
f5ee954
 
64286ff
f5ee954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dcffda
 
 
66b3882
64286ff
ae16b45
 
 
 
 
 
 
64286ff
8dcffda
f5ee954
 
 
1985d41
f5ee954
 
 
 
 
1985d41
f5ee954
 
 
 
 
 
 
 
 
 
 
 
1985d41
f5ee954
 
 
 
 
 
1985d41
f5ee954
 
66b3882
f5ee954
 
8dcffda
f5ee954
 
8dcffda
f5ee954
 
 
 
8dcffda
1985d41
f5ee954
b47d208
 
1985d41
f5ee954
66b3882
 
1985d41
f5ee954
 
b47d208
 
f5ee954
 
 
 
4a7124f
 
 
 
f5ee954
 
 
 
 
d4b0552
f5ee954
 
 
d4b0552
f5ee954
 
ae16b45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
'''
ART Gradio Example App [Evasion]

To run: 
- clone the repository
- execute: gradio examples/gradio_app.py or python examples/gradio_app.py
- navigate to local URL e.g. http://127.0.0.1:7860
'''

import gradio as gr
import numpy as np
from carbon_theme import Carbon

import numpy as np
import torch
import transformers

from art.estimators.classification.hugging_face import HuggingFaceClassifierPyTorch
from art.attacks.evasion import ProjectedGradientDescentPyTorch, AdversarialPatchPyTorch
from art.utils import load_dataset

from art.attacks.poisoning import PoisoningAttackBackdoor
from art.attacks.poisoning.perturbations import insert_image

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

css = """

.custom-text {
    --text-md: 20px !important;
    --text-sm: 18px !important;
    --block-info-text-size: var(--text-sm);
    --block-label-text-size: var(--text-sm);
    --block-title-text-size: var(--text-md);
    --body-text-size: var(--text-md);
    --button-small-text-size: var(--text-md);
    --checkbox-label-text-size: var(--text-md);
    --input-text-size: var(--text-md);
    --prose-text-size: var(--text-md);
    --section-header-text-size: var(--text-md);
}
.input-image { margin: auto !important }
.plot-padding { padding: 20px; }
.eta-bar.svelte-1occ011.svelte-1occ011 {
    background: #ccccff !important;
}
.center-text { text-align: center !important }
.larger-gap { gap: 100px !important; }
.symbols { text-align: center !important; margin: auto !important; }

.eval-bt { background-color: #3b74f4 !important; color: white !important; }
.cust-width { min-width: 250px !important;}
"""

global model 
model = transformers.AutoModelForImageClassification.from_pretrained(
        'facebook/deit-tiny-distilled-patch16-224',
        ignore_mismatched_sizes=True,
        num_labels=10
    )

def default_clean():
    return [('./data/default/clean/0_fish.png', 'fish'),
            ('./data/default/clean/1_fish.png', 'fish'),
            ('./data/default/clean/2_fish.png', 'church'),
            ('./data/default/clean/3_fish.png', 'fish'),
            ('./data/default/clean/4_fish.png', 'church'),
            ('./data/default/clean/5_fish.png', 'fish'),
            ('./data/default/clean/6_fish.png', 'fish'),
            ('./data/default/clean/7_fish.png', 'fish')]
    
def default_poisoned():
    return [('./data/default/poisoned/0_fish.png', 'church'),
            ('./data/default/poisoned/1_fish.png', 'church'),
            ('./data/default/poisoned/2_fish.png', 'church'),
            ('./data/default/poisoned/3_fish.png', 'church'),
            ('./data/default/poisoned/4_fish.png', 'church'),
            ('./data/default/poisoned/5_fish.png', 'church'),
            ('./data/default/poisoned/6_fish.png', 'church'),
            ('./data/default/poisoned/7_fish.png', 'church')]

def sample_imagenette():
    import torchvision
    label_names = [
            'fish',
            'dog',
            'cassette player',
            'chainsaw',
            'church',
            'french horn',
            'garbage truck',
            'gas pump',
            'golf ball',
            'parachutte',
        ]
    transform = torchvision.transforms.Compose([
        torchvision.transforms.Resize((224, 224)),
        torchvision.transforms.ToTensor(),
    ])
    train_dataset = torchvision.datasets.ImageFolder(root="./data/imagenette2-320/train", transform=transform)
    labels = np.asarray(train_dataset.targets)
    classes = np.unique(labels)
    samples_per_class = 1

    x_subset = []
    y_subset = []

    for c in classes:
        indices = np.where(labels == c)[0][:samples_per_class]
        for i in indices:
            x_subset.append(train_dataset[i][0])
            y_subset.append(train_dataset[i][1])

    x_subset = np.stack(x_subset)
    y_subset = np.asarray(y_subset)
    
    gallery_out = []
    for i, im in enumerate(x_subset):
        gallery_out.append( (im.transpose(1,2,0), label_names[y_subset[i]]) )
    return gallery_out

def clf_poison_evaluate(*args):
    label_names = [
            'fish',
            'dog',
            'cassette player',
            'chainsaw',
            'church',
            'french horn',
            'garbage truck',
            'gas pump',
            'golf ball',
            'parachutte',
        ]
    
    attack = args[0]
    trigger_image = args[1]
    target_class = args[2]

    target_class = label_names.index(target_class)
    
    
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
    loss_fn = torch.nn.CrossEntropyLoss()

    poison_hf_model = HuggingFaceClassifierPyTorch(
        model=model,
        loss=loss_fn,
        optimizer=optimizer,
        input_shape=(3, 224, 224),
        nb_classes=10,
        clip_values=(0, 1),
    )
    
    model_checkpoint_path = './poisoned_models/deit_imagenette_poisoned_model_'+str(target_class)+'.pt'
    poison_hf_model.model.load_state_dict(torch.load(model_checkpoint_path, map_location=device))
        
    import torchvision
    transform = torchvision.transforms.Compose([
        torchvision.transforms.Resize((224, 224)),
        torchvision.transforms.ToTensor(),
    ])
    train_dataset = torchvision.datasets.ImageFolder(root="./data/imagenette2-320/train", transform=transform)
    labels = np.asarray(train_dataset.targets)
    classes = np.unique(labels)
    samples_per_class = 20

    x_subset = []
    y_subset = []

    for c in classes:
        indices = np.where(labels == c)[0][:samples_per_class]
        for i in indices:
            x_subset.append(train_dataset[i][0])
            y_subset.append(train_dataset[i][1])

    x_subset = np.stack(x_subset)
    y_subset = np.asarray(y_subset)
        
    if attack == "Backdoor":
        from PIL import Image
        im = Image.fromarray(trigger_image)
        im.save("./tmp.png")
        
        def poison_func(x):
            return insert_image(
                x,
                backdoor_path='./baby-on-board.png',
                channels_first=True,
                random=False,
                x_shift=0,
                y_shift=0,
                size=(32, 32),
                mode='RGB',
                blend=0.8
            )
            
        backdoor = PoisoningAttackBackdoor(poison_func)
        source_class = 0
        poison_percent = 0.5

        x_poison = np.copy(x_subset)
        y_poison = np.copy(y_subset)
        is_poison = np.zeros(len(x_subset)).astype(bool)

        indices = np.where(y_subset == source_class)[0]
        num_poison = int(poison_percent * len(indices))

        for i in indices[:num_poison]:
            x_poison[i], _ = backdoor.poison(x_poison[i], [])
            y_poison[i] = target_class
            is_poison[i] = True

        poison_indices = np.where(is_poison)[0]
        #poison_hf_model.fit(x_poison, y_poison, nb_epochs=2)
        
        clean_x = x_poison[~is_poison]
        clean_y = y_poison[~is_poison]

        outputs = poison_hf_model.predict(clean_x)
        clean_preds = np.argmax(outputs, axis=1)
        clean_acc = np.mean(clean_preds == clean_y)
        
        clean_out = []
        for i, im in enumerate(clean_x):
            clean_out.append( (im.transpose(1,2,0), label_names[clean_preds[i]]) )
        
        poison_x = x_poison[is_poison]
        poison_y = y_poison[is_poison]

        outputs = poison_hf_model.predict(poison_x)
        poison_preds = np.argmax(outputs, axis=1)
        poison_acc = np.mean(poison_preds == poison_y)
        
        poison_out = []
        for i, im in enumerate(poison_x):
            poison_out.append( (im.transpose(1,2,0), label_names[poison_preds[i]]) )
            
        
        return clean_out, poison_out, clean_acc, poison_acc
  
def show_params(type):
    '''
    Show model parameters based on selected model type
    '''
    if type!="Example":
        return gr.Column(visible=True)
    return gr.Column(visible=False)  

# head = f'''<script async defer src="https://buttons.github.io/buttons.js"></script>'''

# e.g. To use a local alternative theme: carbon_theme = Carbon()
carbon_theme = Carbon()
with gr.Blocks(css=css, theme='Tshackelton/IBMPlex-DenseReadable') as demo:
    import art
    text = art.__version__
    
    with gr.Row(elem_classes="custom-text"):
        with gr.Column(scale=1,):
            gr.Image(value="./art_lfai.png", show_label=False, show_download_button=False, width=100, show_share_button=False)
        with gr.Column(scale=2):
            gr.Markdown(f"<h1>🧪 Red-teaming HuggingFace with ART [Poisoning]</h1>", elem_classes="plot-padding")
        
    
    gr.Markdown('''<p style="font-size: 20px; text-align: justify">ℹ️ Red-teaming in AI is an activity where we masquerade
                as evil attackers 😈 and attempt to find vulnerabilities in our AI models. Identifying scenarios where
                our AI models do not work as expected, or fail, is important as it helps us better understand
                its limitations and vulnerability when deployed in the real world 🧐</p>''')
    gr.Markdown('''<p style="font-size: 20px; text-align: justify">ℹ️ By attacking our AI models ourselves, we can better the risks associated with use
                in the real world and implement mechanisms which can mitigate and protect our model. The example below demonstrates a
                common red-team workflow to assess model vulnerability to data poisoning attacks 🧪</p>''')
    
    gr.Markdown('''<p style="font-size: 18px; text-align: justify"><i>Check out the full suite of features provided by ART <a href="https://github.com/Trusted-AI/adversarial-robustness-toolbox"
                    target="blank_">here</a>. To dive further into poisoning attacks with Hugging Face and ART, check out our 
                    <a href="https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/notebooks/hugging_face_poisoning.ipynb" 
                    target="_blank">notebook</a>. Also feel free to contribute and give our repo a ⭐.</i></p>''')
    
    '''gr.Markdown(<div style="width: 100%; text-align: center;">
                <a style="margin-right: 20px;" class="github-button" 
                href="https://github.com/Trusted-AI/adversarial-robustness-toolbox" 
                data-color-scheme="no-preference: light; light: light; dark: dark;" data-size="large" 
                data-show-count="true" aria-label="Star Trusted-AI/adversarial-robustness-toolbox on GitHub">Star</a> 
                <!-- Place this tag where you want the button to render. -->
                <a class="github-button" href="https://github.com/Trusted-AI" 
                data-color-scheme="no-preference: light; light: light; dark: dark;" data-size="large" data-show-count="true" 
                aria-label="Follow @Trusted-AI on GitHub">Follow @Trusted-AI</a></div>)'''

    gr.Markdown('''<hr/>''')
    
    with gr.Row(elem_classes=["larger-gap", "custom-text"]):
        with gr.Column(scale=1, elem_classes="cust-width"):
            gr.Markdown('''<p style="font-size: 20px; text-align: justify">ℹ️ First lets set the scene. You have a dataset of images, such as Imagenette.</p>''')
            gr.Markdown('''<p style="font-size: 18px; text-align: justify"><i>Note: Imagenette is a subset of 10 easily classified classes from Imagenet as shown.</i></p>''')
            gr.Markdown('''<p style="font-size: 20px; text-align: justify">ℹ️ Your goal is to have an AI model capable of classifying these images. So you 
                        find a pre-trained model from Hugging Face,
                        such as Meta's Distilled Data-efficient Image Transformer, which has been trained on this data (or so you think ☠️).</p>''')
        with gr.Column(scale=1, elem_classes="cust-width"): 
            gr.Markdown('''
                            <p style="font-size: 20px;"><b>Hugging Face dataset:</b> 
                            <a href="https://huggingface.co/datasets/frgfm/imagenette" target="_blank">Imagenette</a></p>
                            <p style="font-size: 18px; padding-left: 20px;"><i>Imagenette labels:</i>
                                <i>{fish, dog, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute}</i>
                            </p>
                            <p style="font-size: 20px;"><b>Hugging Face model:</b><br/>
                            <a href="https://huggingface.co/facebook/deit-tiny-patch16-224"
                            target="_blank">facebook/deit-tiny-distilled-patch16-224</a></p>
                            <br/>
                            <p style="font-size: 20px;">👀 take a look at the sample images from the Imagenette dataset and their respective labels.</p>
                        ''')
        with gr.Column(scale=1, elem_classes="cust-width"):
            gr.Gallery(label="Imagenette", preview=False, value=sample_imagenette(), height=420)
            
    gr.Markdown('''<hr/>''')
    
    gr.Markdown('''<p style="text-align: justify; font-size: 18px">ℹ️ Now as a responsible AI expert, you wish to assert that your model is not vulnerable to
                attacks which might manipulate the prediction. For instance, fish become classified as dogs or golf balls. To do this, you will deploy
                a backdoor poisoning attack against your own model and assess its performance. Click the button below 👇 to evaluate a poisoned model.</p>''')

    with gr.Row(elem_classes="custom-text"):
        with gr.Column(scale=6):
            attack = gr.Textbox(visible=True, value="Backdoor", label="Attack", interactive=False)
            target_class = gr.Radio(label="Target class", info="The class you wish to force the model to predict.",
                                        choices=['church',
                                        'cassette player',
                                        'chainsaw',
                                        'dog',
                                        'french horn',
                                        'garbage truck',
                                        'gas pump',
                                        'golf ball',
                                        'parachutte',], value='church')
            eval_btn_patch = gr.Button("Evaluate ✨", elem_classes="eval-bt")
        with gr.Column(scale=10):
            clean_gallery = gr.Gallery(default_clean(), label="Clean", preview=False, show_download_button=True, height=600)
            clean_accuracy = gr.Number(0.97, label="Clean Accuracy", precision=2, info="The percent of correctly classified images without trigger.")
        with gr.Column(scale=1, min_width=0, elem_classes='symbols'):
            gr.Markdown('''➕''')
        with gr.Column(scale=3, elem_classes='symbols'):
            trigger_image = gr.Image(label="Trigger",  value="./baby-on-board.png", interactive=False)
        with gr.Column(scale=1, min_width=0):
            gr.Markdown('''🟰''', elem_classes='symbols')
        with gr.Column(scale=10):
            poison_gallery = gr.Gallery(default_poisoned(), label="Poisoned", preview=False, show_download_button=True, height=600)
            poison_success = gr.Number(1.0, label="Poison Success", precision=2, info="The percent of images with trigger classified as the target.")
        
    eval_btn_patch.click(clf_poison_evaluate, inputs=[attack, trigger_image, target_class],
                outputs=[clean_gallery, poison_gallery, clean_accuracy, poison_success])  
        
    gr.Markdown('''<br/>''')
    gr.Markdown('''<p style="font-size: 18px; text-align: center;"><i>☠️ Want to try out a poisoning attack with your own model and data?
                Run our <a href="https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/notebooks/hugging_face_poisoning.ipynb" 
                    target="_blank">notebooks</a>!</i></p>''')
    gr.Markdown('''<br/>''')
            
if __name__ == "__main__":
    
    # For development
    '''demo.launch(show_api=False, debug=True, share=False,
                server_name="0.0.0.0", 
                server_port=7777, 
                ssl_verify=False,
                max_threads=20)'''
                
    # For deployment
    demo.launch()