Spaces:
Runtime error
Runtime error
File size: 16,326 Bytes
f5ee954 1985d41 f5ee954 8dcffda b47d208 f5ee954 8dcffda f5ee954 8dcffda f5ee954 64286ff 8dcffda f5ee954 64286ff f5ee954 8dcffda 66b3882 64286ff ae16b45 64286ff 8dcffda f5ee954 1985d41 f5ee954 1985d41 f5ee954 1985d41 f5ee954 1985d41 f5ee954 66b3882 f5ee954 8dcffda f5ee954 8dcffda f5ee954 8dcffda 1985d41 f5ee954 b47d208 1985d41 f5ee954 66b3882 1985d41 f5ee954 b47d208 f5ee954 4a7124f f5ee954 d4b0552 f5ee954 d4b0552 f5ee954 ae16b45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
'''
ART Gradio Example App [Evasion]
To run:
- clone the repository
- execute: gradio examples/gradio_app.py or python examples/gradio_app.py
- navigate to local URL e.g. http://127.0.0.1:7860
'''
import gradio as gr
import numpy as np
from carbon_theme import Carbon
import numpy as np
import torch
import transformers
from art.estimators.classification.hugging_face import HuggingFaceClassifierPyTorch
from art.attacks.evasion import ProjectedGradientDescentPyTorch, AdversarialPatchPyTorch
from art.utils import load_dataset
from art.attacks.poisoning import PoisoningAttackBackdoor
from art.attacks.poisoning.perturbations import insert_image
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
css = """
.custom-text {
--text-md: 20px !important;
--text-sm: 18px !important;
--block-info-text-size: var(--text-sm);
--block-label-text-size: var(--text-sm);
--block-title-text-size: var(--text-md);
--body-text-size: var(--text-md);
--button-small-text-size: var(--text-md);
--checkbox-label-text-size: var(--text-md);
--input-text-size: var(--text-md);
--prose-text-size: var(--text-md);
--section-header-text-size: var(--text-md);
}
.input-image { margin: auto !important }
.plot-padding { padding: 20px; }
.eta-bar.svelte-1occ011.svelte-1occ011 {
background: #ccccff !important;
}
.center-text { text-align: center !important }
.larger-gap { gap: 100px !important; }
.symbols { text-align: center !important; margin: auto !important; }
.eval-bt { background-color: #3b74f4 !important; color: white !important; }
.cust-width { min-width: 250px !important;}
"""
global model
model = transformers.AutoModelForImageClassification.from_pretrained(
'facebook/deit-tiny-distilled-patch16-224',
ignore_mismatched_sizes=True,
num_labels=10
)
def default_clean():
return [('./data/default/clean/0_fish.png', 'fish'),
('./data/default/clean/1_fish.png', 'fish'),
('./data/default/clean/2_fish.png', 'church'),
('./data/default/clean/3_fish.png', 'fish'),
('./data/default/clean/4_fish.png', 'church'),
('./data/default/clean/5_fish.png', 'fish'),
('./data/default/clean/6_fish.png', 'fish'),
('./data/default/clean/7_fish.png', 'fish')]
def default_poisoned():
return [('./data/default/poisoned/0_fish.png', 'church'),
('./data/default/poisoned/1_fish.png', 'church'),
('./data/default/poisoned/2_fish.png', 'church'),
('./data/default/poisoned/3_fish.png', 'church'),
('./data/default/poisoned/4_fish.png', 'church'),
('./data/default/poisoned/5_fish.png', 'church'),
('./data/default/poisoned/6_fish.png', 'church'),
('./data/default/poisoned/7_fish.png', 'church')]
def sample_imagenette():
import torchvision
label_names = [
'fish',
'dog',
'cassette player',
'chainsaw',
'church',
'french horn',
'garbage truck',
'gas pump',
'golf ball',
'parachutte',
]
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
])
train_dataset = torchvision.datasets.ImageFolder(root="./data/imagenette2-320/train", transform=transform)
labels = np.asarray(train_dataset.targets)
classes = np.unique(labels)
samples_per_class = 1
x_subset = []
y_subset = []
for c in classes:
indices = np.where(labels == c)[0][:samples_per_class]
for i in indices:
x_subset.append(train_dataset[i][0])
y_subset.append(train_dataset[i][1])
x_subset = np.stack(x_subset)
y_subset = np.asarray(y_subset)
gallery_out = []
for i, im in enumerate(x_subset):
gallery_out.append( (im.transpose(1,2,0), label_names[y_subset[i]]) )
return gallery_out
def clf_poison_evaluate(*args):
label_names = [
'fish',
'dog',
'cassette player',
'chainsaw',
'church',
'french horn',
'garbage truck',
'gas pump',
'golf ball',
'parachutte',
]
attack = args[0]
trigger_image = args[1]
target_class = args[2]
target_class = label_names.index(target_class)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = torch.nn.CrossEntropyLoss()
poison_hf_model = HuggingFaceClassifierPyTorch(
model=model,
loss=loss_fn,
optimizer=optimizer,
input_shape=(3, 224, 224),
nb_classes=10,
clip_values=(0, 1),
)
model_checkpoint_path = './poisoned_models/deit_imagenette_poisoned_model_'+str(target_class)+'.pt'
poison_hf_model.model.load_state_dict(torch.load(model_checkpoint_path, map_location=device))
import torchvision
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
])
train_dataset = torchvision.datasets.ImageFolder(root="./data/imagenette2-320/train", transform=transform)
labels = np.asarray(train_dataset.targets)
classes = np.unique(labels)
samples_per_class = 20
x_subset = []
y_subset = []
for c in classes:
indices = np.where(labels == c)[0][:samples_per_class]
for i in indices:
x_subset.append(train_dataset[i][0])
y_subset.append(train_dataset[i][1])
x_subset = np.stack(x_subset)
y_subset = np.asarray(y_subset)
if attack == "Backdoor":
from PIL import Image
im = Image.fromarray(trigger_image)
im.save("./tmp.png")
def poison_func(x):
return insert_image(
x,
backdoor_path='./baby-on-board.png',
channels_first=True,
random=False,
x_shift=0,
y_shift=0,
size=(32, 32),
mode='RGB',
blend=0.8
)
backdoor = PoisoningAttackBackdoor(poison_func)
source_class = 0
poison_percent = 0.5
x_poison = np.copy(x_subset)
y_poison = np.copy(y_subset)
is_poison = np.zeros(len(x_subset)).astype(bool)
indices = np.where(y_subset == source_class)[0]
num_poison = int(poison_percent * len(indices))
for i in indices[:num_poison]:
x_poison[i], _ = backdoor.poison(x_poison[i], [])
y_poison[i] = target_class
is_poison[i] = True
poison_indices = np.where(is_poison)[0]
#poison_hf_model.fit(x_poison, y_poison, nb_epochs=2)
clean_x = x_poison[~is_poison]
clean_y = y_poison[~is_poison]
outputs = poison_hf_model.predict(clean_x)
clean_preds = np.argmax(outputs, axis=1)
clean_acc = np.mean(clean_preds == clean_y)
clean_out = []
for i, im in enumerate(clean_x):
clean_out.append( (im.transpose(1,2,0), label_names[clean_preds[i]]) )
poison_x = x_poison[is_poison]
poison_y = y_poison[is_poison]
outputs = poison_hf_model.predict(poison_x)
poison_preds = np.argmax(outputs, axis=1)
poison_acc = np.mean(poison_preds == poison_y)
poison_out = []
for i, im in enumerate(poison_x):
poison_out.append( (im.transpose(1,2,0), label_names[poison_preds[i]]) )
return clean_out, poison_out, clean_acc, poison_acc
def show_params(type):
'''
Show model parameters based on selected model type
'''
if type!="Example":
return gr.Column(visible=True)
return gr.Column(visible=False)
# head = f'''<script async defer src="https://buttons.github.io/buttons.js"></script>'''
# e.g. To use a local alternative theme: carbon_theme = Carbon()
carbon_theme = Carbon()
with gr.Blocks(css=css, theme='Tshackelton/IBMPlex-DenseReadable') as demo:
import art
text = art.__version__
with gr.Row(elem_classes="custom-text"):
with gr.Column(scale=1,):
gr.Image(value="./art_lfai.png", show_label=False, show_download_button=False, width=100, show_share_button=False)
with gr.Column(scale=2):
gr.Markdown(f"<h1>🧪 Red-teaming HuggingFace with ART [Poisoning]</h1>", elem_classes="plot-padding")
gr.Markdown('''<p style="font-size: 20px; text-align: justify">ℹ️ Red-teaming in AI is an activity where we masquerade
as evil attackers 😈 and attempt to find vulnerabilities in our AI models. Identifying scenarios where
our AI models do not work as expected, or fail, is important as it helps us better understand
its limitations and vulnerability when deployed in the real world 🧐</p>''')
gr.Markdown('''<p style="font-size: 20px; text-align: justify">ℹ️ By attacking our AI models ourselves, we can better the risks associated with use
in the real world and implement mechanisms which can mitigate and protect our model. The example below demonstrates a
common red-team workflow to assess model vulnerability to data poisoning attacks 🧪</p>''')
gr.Markdown('''<p style="font-size: 18px; text-align: justify"><i>Check out the full suite of features provided by ART <a href="https://github.com/Trusted-AI/adversarial-robustness-toolbox"
target="blank_">here</a>. To dive further into poisoning attacks with Hugging Face and ART, check out our
<a href="https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/notebooks/hugging_face_poisoning.ipynb"
target="_blank">notebook</a>. Also feel free to contribute and give our repo a ⭐.</i></p>''')
'''gr.Markdown(<div style="width: 100%; text-align: center;">
<a style="margin-right: 20px;" class="github-button"
href="https://github.com/Trusted-AI/adversarial-robustness-toolbox"
data-color-scheme="no-preference: light; light: light; dark: dark;" data-size="large"
data-show-count="true" aria-label="Star Trusted-AI/adversarial-robustness-toolbox on GitHub">Star</a>
<!-- Place this tag where you want the button to render. -->
<a class="github-button" href="https://github.com/Trusted-AI"
data-color-scheme="no-preference: light; light: light; dark: dark;" data-size="large" data-show-count="true"
aria-label="Follow @Trusted-AI on GitHub">Follow @Trusted-AI</a></div>)'''
gr.Markdown('''<hr/>''')
with gr.Row(elem_classes=["larger-gap", "custom-text"]):
with gr.Column(scale=1, elem_classes="cust-width"):
gr.Markdown('''<p style="font-size: 20px; text-align: justify">ℹ️ First lets set the scene. You have a dataset of images, such as Imagenette.</p>''')
gr.Markdown('''<p style="font-size: 18px; text-align: justify"><i>Note: Imagenette is a subset of 10 easily classified classes from Imagenet as shown.</i></p>''')
gr.Markdown('''<p style="font-size: 20px; text-align: justify">ℹ️ Your goal is to have an AI model capable of classifying these images. So you
find a pre-trained model from Hugging Face,
such as Meta's Distilled Data-efficient Image Transformer, which has been trained on this data (or so you think ☠️).</p>''')
with gr.Column(scale=1, elem_classes="cust-width"):
gr.Markdown('''
<p style="font-size: 20px;"><b>Hugging Face dataset:</b>
<a href="https://huggingface.co/datasets/frgfm/imagenette" target="_blank">Imagenette</a></p>
<p style="font-size: 18px; padding-left: 20px;"><i>Imagenette labels:</i>
<i>{fish, dog, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute}</i>
</p>
<p style="font-size: 20px;"><b>Hugging Face model:</b><br/>
<a href="https://huggingface.co/facebook/deit-tiny-patch16-224"
target="_blank">facebook/deit-tiny-distilled-patch16-224</a></p>
<br/>
<p style="font-size: 20px;">👀 take a look at the sample images from the Imagenette dataset and their respective labels.</p>
''')
with gr.Column(scale=1, elem_classes="cust-width"):
gr.Gallery(label="Imagenette", preview=False, value=sample_imagenette(), height=420)
gr.Markdown('''<hr/>''')
gr.Markdown('''<p style="text-align: justify; font-size: 18px">ℹ️ Now as a responsible AI expert, you wish to assert that your model is not vulnerable to
attacks which might manipulate the prediction. For instance, fish become classified as dogs or golf balls. To do this, you will deploy
a backdoor poisoning attack against your own model and assess its performance. Click the button below 👇 to evaluate a poisoned model.</p>''')
with gr.Row(elem_classes="custom-text"):
with gr.Column(scale=6):
attack = gr.Textbox(visible=True, value="Backdoor", label="Attack", interactive=False)
target_class = gr.Radio(label="Target class", info="The class you wish to force the model to predict.",
choices=['church',
'cassette player',
'chainsaw',
'dog',
'french horn',
'garbage truck',
'gas pump',
'golf ball',
'parachutte',], value='church')
eval_btn_patch = gr.Button("Evaluate ✨", elem_classes="eval-bt")
with gr.Column(scale=10):
clean_gallery = gr.Gallery(default_clean(), label="Clean", preview=False, show_download_button=True, height=600)
clean_accuracy = gr.Number(0.97, label="Clean Accuracy", precision=2, info="The percent of correctly classified images without trigger.")
with gr.Column(scale=1, min_width=0, elem_classes='symbols'):
gr.Markdown('''➕''')
with gr.Column(scale=3, elem_classes='symbols'):
trigger_image = gr.Image(label="Trigger", value="./baby-on-board.png", interactive=False)
with gr.Column(scale=1, min_width=0):
gr.Markdown('''🟰''', elem_classes='symbols')
with gr.Column(scale=10):
poison_gallery = gr.Gallery(default_poisoned(), label="Poisoned", preview=False, show_download_button=True, height=600)
poison_success = gr.Number(1.0, label="Poison Success", precision=2, info="The percent of images with trigger classified as the target.")
eval_btn_patch.click(clf_poison_evaluate, inputs=[attack, trigger_image, target_class],
outputs=[clean_gallery, poison_gallery, clean_accuracy, poison_success])
gr.Markdown('''<br/>''')
gr.Markdown('''<p style="font-size: 18px; text-align: center;"><i>☠️ Want to try out a poisoning attack with your own model and data?
Run our <a href="https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/notebooks/hugging_face_poisoning.ipynb"
target="_blank">notebooks</a>!</i></p>''')
gr.Markdown('''<br/>''')
if __name__ == "__main__":
# For development
'''demo.launch(show_api=False, debug=True, share=False,
server_name="0.0.0.0",
server_port=7777,
ssl_verify=False,
max_threads=20)'''
# For deployment
demo.launch() |