Spaces:
Sleeping
Sleeping
File size: 21,917 Bytes
778d12b 82d0451 778d12b e2c1fac b0be422 dffb9cc 778d12b 82d0451 778d12b 82d0451 778d12b 82d0451 778d12b 82d0451 778d12b 82d0451 778d12b 82d0451 778d12b 82d0451 778d12b c484046 82d0451 c484046 778d12b bfddcf6 778d12b 82d0451 778d12b 0e023fd 8786a62 bfddcf6 09a3643 8786a62 bfddcf6 8786a62 bfddcf6 8786a62 bfddcf6 8786a62 778d12b 97afb36 778d12b 5301278 82d0451 9164106 82d0451 778d12b 82d0451 778d12b 82d0451 c484046 97afb36 82d0451 5301278 eda40cc 8786a62 82d0451 8786a62 82d0451 eda40cc 82d0451 eda40cc 5301278 778d12b 82d0451 8786a62 c484046 82d0451 8786a62 82d0451 5301278 778d12b bfddcf6 82d0451 778d12b 82d0451 778d12b 82d0451 bfddcf6 eda40cc 778d12b 82d0451 8786a62 82d0451 8786a62 eda40cc 82d0451 eda40cc 8786a62 eda40cc 82d0451 8786a62 82d0451 8786a62 778d12b 82d0451 8786a62 82d0451 2fde340 82d0451 bfddcf6 eda40cc 778d12b 82d0451 5301278 8786a62 778d12b eda40cc 82d0451 5301278 8786a62 82d0451 eda40cc 82d0451 8786a62 bfddcf6 82d0451 65c3a6a 82d0451 778d12b 10bc4be 778d12b 10bc4be 778d12b 2f9e420 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
'''
ART Gradio Example App [Evasion]
To run:
- clone the repository
- execute: gradio examples/gradio_app.py or python examples/gradio_app.py
- navigate to local URL e.g. http://127.0.0.1:7860
'''
import gradio as gr
import numpy as np
from carbon_theme import Carbon
import numpy as np
import torch
import transformers
from art.estimators.classification.hugging_face import HuggingFaceClassifierPyTorch
from art.attacks.evasion import ProjectedGradientDescentPyTorch, AdversarialPatchPyTorch
from art.utils import load_dataset
from art.attacks.poisoning import PoisoningAttackBackdoor
from art.attacks.poisoning.perturbations import insert_image
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
css = """
.custom-text {
--text-md: 20px !important;
--text-sm: 18px !important;
--block-info-text-size: var(--text-sm);
--block-label-text-size: var(--text-sm);
--block-title-text-size: var(--text-md);
--body-text-size: var(--text-md);
--button-small-text-size: var(--text-md);
--checkbox-label-text-size: var(--text-md);
--input-text-size: var(--text-md);
--prose-text-size: var(--text-md);
--section-header-text-size: var(--text-md);
}
.eta-bar.svelte-1occ011.svelte-1occ011 {
background: #ccccff !important;
}
.center-text { text-align: center !important }
.larger-gap { gap: 100px !important; }
.symbols { text-align: center !important; margin: auto !important; }
.cust-width { min-width: 250px !important;}
.eval-bt { background-color: #3b74f4; color: white; }
input[type="number"].svelte-3iwdd6 { padding-top: 20px; padding-bottom: 20px;}
"""
def sample_CIFAR10():
label_names = [
'airplane',
'automobile',
'bird',
'cat',
'deer',
'dog',
'frog',
'horse',
'ship',
'truck',
]
(x_train, y_train), (_, _), _, _ = load_dataset('cifar10')
x_train = np.transpose(x_train, (0, 3, 1, 2)).astype(np.float32)
y_train = np.argmax(y_train, axis=1)
gallery_out = []
for i, im in enumerate(x_train[:10]):
gallery_out.append((im.transpose(1,2,0), label_names[y_train[i]]))
return gallery_out
def clf_evasion_evaluate(*args):
'''
Run a classification task evaluation
'''
attack = args[0]
attack_max_iter = args[1]
attack_eps = args[2]
attack_eps_steps = args[3]
x_location = args[4]
y_location = args[5]
patch_height = args[6]
patch_width = args[7]
model = transformers.AutoModelForImageClassification.from_pretrained(
'facebook/deit-tiny-distilled-patch16-224',
ignore_mismatched_sizes=True,
num_labels=10
)
upsampler = torch.nn.Upsample(scale_factor=7, mode='nearest')
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = torch.nn.CrossEntropyLoss()
hf_model = HuggingFaceClassifierPyTorch(
model=model,
loss=loss_fn,
optimizer=optimizer,
input_shape=(3, 32, 32),
nb_classes=10,
clip_values=(0, 1),
processor=upsampler
)
model_checkpoint_path = './state_dicts/deit_cifar_base_model.pt'
hf_model.model.load_state_dict(torch.load(model_checkpoint_path, map_location=device))
(x_train, y_train), (_, _), _, _ = load_dataset('cifar10')
x_train = np.transpose(x_train, (0, 3, 1, 2)).astype(np.float32)
y_train = np.argmax(y_train, axis=1)
classes = np.unique(y_train)
samples_per_class = 1
x_subset = []
y_subset = []
for c in classes:
indices = y_train == c
x_subset.append(x_train[indices][:samples_per_class])
y_subset.append(y_train[indices][:samples_per_class])
x_subset = np.concatenate(x_subset)
y_subset = np.concatenate(y_subset)
label_names = [
'airplane',
'automobile',
'bird',
'cat',
'deer',
'dog',
'frog',
'horse',
'ship',
'truck',
]
outputs = hf_model.predict(x_subset)
clean_preds = np.argmax(outputs, axis=1)
clean_acc = np.mean(clean_preds == y_subset)
benign_gallery_out = []
for i, im in enumerate(x_subset):
benign_gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] ))
if attack == "PGD":
attacker = ProjectedGradientDescentPyTorch(hf_model, max_iter=attack_max_iter,
eps=attack_eps, eps_step=attack_eps_steps)
x_adv = attacker.generate(x_subset)
outputs = hf_model.predict(x_adv)
adv_preds = np.argmax(outputs, axis=1)
adv_acc = np.mean(adv_preds == y_subset)
adv_gallery_out = []
for i, im in enumerate(x_adv):
adv_gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] ))
delta = ((x_subset - x_adv) + attack_eps) * 10 # shift to 0 and make perturbations 10x larger to visualise them
if delta.max()>1:
delta = (delta-np.min(delta))/(np.max(delta)-np.min(delta))
delta[delta>1] = 1
delta[delta<0] = 0
delta_gallery_out = delta.transpose(0, 2, 3, 1)
if attack == "Adversarial Patch":
scale_min = 0.3
scale_max = 1.0
rotation_max = 0
learning_rate = 5000.
attacker = AdversarialPatchPyTorch(hf_model, scale_max=scale_max,
scale_min=scale_min,
rotation_max=rotation_max,
learning_rate=learning_rate,
max_iter=attack_max_iter, patch_type='square',
patch_location=(x_location, y_location),
patch_shape=(3, patch_height, patch_width),
targeted=True)
y_one_hot = np.zeros(len(label_names))
y_one_hot[2] = 1.0
y_target = np.tile(y_one_hot, (x_subset.shape[0], 1))
patch, _ = attacker.generate(x_subset, y_target)
x_adv = attacker.apply_patch(x_subset, scale=0.3)
outputs = hf_model.predict(x_adv)
adv_preds = np.argmax(outputs, axis=1)
adv_acc = np.mean(adv_preds == y_subset)
adv_gallery_out = []
for i, im in enumerate(x_adv):
adv_gallery_out.append(( im.transpose(1,2,0), label_names[np.argmax(outputs[i])] ))
delta_gallery_out = np.expand_dims(patch, 0).transpose(0,2,3,1)
return benign_gallery_out, adv_gallery_out, delta_gallery_out, clean_acc, adv_acc
def show_params(type):
'''
Show model parameters based on selected model type
'''
if type!="Example":
return gr.Column(visible=True)
return gr.Column(visible=False)
def default_clean():
return [('./data/pgd/clean/0_airplane.png', 'airplane'),
('./data/pgd/clean/1_automobile.png', 'automobile'),
('./data/pgd/clean/2_bird.png', 'bird'),
('./data/pgd/clean/3_cat.png', 'cat'),
('./data/pgd/clean/4_deer.png', 'deer'),
('./data/pgd/clean/5_dog.png', 'dog'),
('./data/pgd/clean/6_frog.png', 'frog'),
('./data/pgd/clean/7_horse.png', 'horse'),
('./data/pgd/clean/8_ship.png', 'ship'),
('./data/pgd/clean/9_truck.png', 'truck')]
def default_perturbation():
return [('./data/pgd/perturb/p1.png'),
('./data/pgd/perturb/p2.png'),
('./data/pgd/perturb/p3.png'),
('./data/pgd/perturb/p4.png'),
('./data/pgd/perturb/p5.png'),
('./data/pgd/perturb/p6.png'),
('./data/pgd/perturb/p7.png'),
('./data/pgd/perturb/p8.png'),
('./data/pgd/perturb/p9.png'),
('./data/pgd/perturb/p10.png')]
def default_pgd():
return [('./data/pgd/attacked/0_airplane.png', 'ship'),
('./data/pgd/attacked/1_automobile.png', 'ship'),
('./data/pgd/attacked/2_bird.png', 'truck'),
('./data/pgd/attacked/3_cat.png', 'deer'),
('./data/pgd/attacked/4_deer.png', 'dog'),
('./data/pgd/attacked/5_dog.png', 'deer'),
('./data/pgd/attacked/6_frog.png', 'horse'),
('./data/pgd/attacked/7_horse.png', 'frog'),
('./data/pgd/attacked/8_ship.png', 'frog'),
('./data/pgd/attacked/9_truck.png', 'automobile')]
def default_patch():
return [('./data/patch/0_airplane.png', 'bird'),
('./data/patch/1_automobile.png', 'automobile'),
('./data/patch/2_bird.png', 'bird'),
('./data/patch/3_cat.png', 'bird'),
('./data/patch/4_deer.png', 'bird'),
('./data/patch/5_dog.png', 'bird'),
('./data/patch/6_frog.png', 'bird'),
('./data/patch/7_horse.png', 'horse'),
('./data/patch/8_ship.png', 'ship'),
('./data/patch/9_truck.png', 'automobile')]
# e.g. To use a local alternative theme: carbon_theme = Carbon()
carbon_theme = Carbon()
with gr.Blocks(css=css, theme='Tshackelton/IBMPlex-DenseReadable') as demo:
import art
text = art.__version__
with gr.Row(elem_classes="custom-text"):
with gr.Column(scale=1,):
gr.Image(value="./art_lfai.png", show_label=False, show_download_button=False, width=100, show_share_button=False)
with gr.Column(scale=2):
gr.Markdown(f"<h1>⚔️ Red-teaming HuggingFace with ART [Evasion]</h1>", elem_classes="plot-padding")
gr.Markdown('''<p style="font-size: 20px; text-align: justify">ℹ️ Red-teaming in AI is an activity where we masquerade
as evil attackers 😈 and attempt to find vulnerabilities in our AI models. Identifying scenarios where
our AI models do not work as expected, or fail, is important as it helps us better understand
its limitations and vulnerability when deployed in the real world 🧐</p>''')
gr.Markdown('''<p style="font-size: 20px; text-align: justify">ℹ️ By attacking our AI models ourselves, we can better the risks associated with use
in the real world and implement mechanisms which can mitigate and protect our model. The example below demonstrates a
common red-team workflow to assess model vulnerability to evasion attacks ⚔️</p>''')
gr.Markdown('''<p style="font-size: 18px; text-align: justify"><i>Check out the full suite of features provided by ART <a href="https://github.com/Trusted-AI/adversarial-robustness-toolbox"
target="blank_">here</a>. To dive further into evasion attacks with Hugging Face and ART, check out our
<a href="https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/notebooks/hugging_face_evasion.ipynb"
target="_blank">notebook</a>. Also feel free to contribute and give our repo a ⭐.</i></p>''')
gr.Markdown('''<hr/>''')
with gr.Row(elem_classes=["larger-gap", "custom-text"]):
with gr.Column(scale=1, elem_classes="cust-width"):
gr.Markdown('''<p style="font-size: 20px; text-align: justify">ℹ️ First lets set the scene. You have a dataset of images, such as CIFAR-10.</p>''')
gr.Markdown('''<p style="font-size: 18px; text-align: justify"><i>Note: CIFAR-10 images are low resolution images which span 10 different categories as shown.</i></p>''')
gr.Markdown('''<p style="font-size: 20px; text-align: justify">ℹ️ Your goal is to have an AI model capable of classifying these images. So you
train a model on this dataset, or use a pre-trained model from Hugging Face,
such as Meta's Distilled Data-efficient Image Transformer.</p>''')
with gr.Column(scale=1, elem_classes="cust-width"):
gr.Markdown('''
<p style="font-size: 20px;"><b>Hugging Face dataset:</b>
<a href="https://huggingface.co/datasets/cifar10" target="_blank">CIFAR-10</a></p>
<p style="font-size: 18px; padding-left: 20px;"><i>CIFAR-10 labels:</i>
<i>{airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, truck}</i>
</p>
<p style="font-size: 20px;"><b>Hugging Face model:</b><br/>
<a href="https://huggingface.co/facebook/deit-tiny-patch16-224"
target="_blank">facebook/deit-tiny-distilled-patch16-224</a></p>
<br/>
<p style="font-size: 20px;">👀 take a look at the sample images from the CIFAR-10 dataset and their respective labels.</p>
''')
with gr.Column(scale=1, elem_classes="cust-width"):
gr.Gallery(label="CIFAR-10", preview=True, value=sample_CIFAR10(), height=420)
gr.Markdown('''<hr/>''')
gr.Markdown('''<p style="text-align: justify; font-size: 18px">ℹ️ Now as a responsible AI expert, you wish to assert that your model is not vulnerable to
attacks which might manipulate the prediction. For instance, ships become classified as birds. To do this, you will deploy
adversarial attacks against your own model and assess its performance.</p>''')
gr.Markdown('''<p style="text-align: justify; font-size: 18px">ℹ️ Below are two common types of evasion attack. Both create adversarial images, which at first glance, seem the same as the original images,
however they contain subtle changes which cause the AI model to make incorrect predictions.</p><br/>''')
with gr.Accordion("Projected Gradient Descent", open=True, elem_classes="custom-text"):
gr.Markdown('''This attack uses the PGD optimization algorithm to identify the optimal perturbations
to add to an image (i.e. changing pixel values) to cause the model to misclassify images. See more
<a href="https://github.com/Trusted-AI/adversarial-robustness-toolbox"
target="blank_">here</a>.''')
with gr.Row():
with gr.Column(scale=1):
attack = gr.Textbox(visible=True, value="PGD", label="Attack", interactive=False)
max_iter = gr.Slider(minimum=1, maximum=10, label="Max iterations", value=4, info="Max number of iterations for attack to run searching for adversarial perturbation. Larger value prolongs search.")
eps = gr.Slider(minimum=0.0001, maximum=1, label="Epsilon", value=0.3, info="Adjusts the maximum allowed perturbation added to the image.")
eps_steps = gr.Slider(minimum=0.0001, maximum=1, label="Epsilon steps", value=0.03, info="Smaller value yields finer perturbation, slower to find adversarial image. Larger value yields more perceptible perturbations, quicker finding adversarial image.")
bt_eval_pgd = gr.Button("Evaluate ✨", elem_classes="eval-bt")
# Evaluation Output. Visualisations of success/failures of running evaluation attacks.
with gr.Column(scale=5):
with gr.Row(elem_classes='symbols'):
with gr.Column(scale=10):
gr.Markdown('''<p style="font-size: 18px"><i>The unmodified, original CIFAR-10 images, with model predictions.</i></p><br>''')
original_gallery = gr.Gallery(default_clean, label="Original", preview=False, show_download_button=True)
benign_output = gr.Label(num_top_classes=3, visible=False)
clean_accuracy = gr.Number(1, label="Clean Accuracy", precision=2)
with gr.Column(scale=1, min_width=0, elem_classes='symbols'):
gr.Markdown('''➕''')
with gr.Column(scale=10):
gr.Markdown('''<p style="font-size: 18px"><i>Visual representation of the calculated perturbations for attacking the model.</i></p><br>''')
delta_gallery = gr.Gallery(default_perturbation, label="Added perturbation", preview=False, show_download_button=True)
with gr.Column(scale=1, min_width=0):
gr.Markdown('''🟰''', elem_classes='symbols')
with gr.Column(scale=10):
gr.Markdown('''<p style="font-size: 18px"><i>The original image (with optimized perturbations applied) gives us an adversarial image which fools the model.</i></p>''')
adversarial_gallery = gr.Gallery(default_pgd, label="Adversarial", preview=False, show_download_button=True)
adversarial_output = gr.Label(num_top_classes=3, visible=False)
robust_accuracy = gr.Number(0, label="Robust Accuracy", precision=2)
bt_eval_pgd.click(clf_evasion_evaluate, inputs=[attack, max_iter, eps, eps_steps, attack, attack, attack, attack],
outputs=[original_gallery, adversarial_gallery, delta_gallery, clean_accuracy,
robust_accuracy])
gr.Markdown('''<br/>''')
with gr.Accordion("Adversarial Patch", open=False, elem_classes="custom-text"):
gr.Markdown('''This attack optimizes pixels in a patch which can be overlayed on an image, causing a model to misclassify. See more
<a href="https://github.com/Trusted-AI/adversarial-robustness-toolbox"
target="blank_">here</a>.''')
with gr.Row():
with gr.Column(scale=1):
attack = gr.Textbox(visible=True, value="Adversarial Patch", label="Attack", interactive=False)
max_iter = gr.Slider(minimum=1, maximum=1000, label="Max iterations", value=100, info="Max number of iterations for attack to run searching for optimal adversarial patch. Larger value prolongs search.")
x_location = gr.Slider(minimum=0.01, maximum=32, label="Location (x)", value=1, info="Moves patch left and right")
y_location = gr.Slider(minimum=0.01, maximum=32, label="Location (y)", value=1, info="Moves patch up and down")
patch_height = gr.Slider(minimum=1, maximum=32, label="Patch height", value=16)
patch_width = gr.Slider(minimum=1, maximum=32, label="Patch width", value=16)
eval_btn_patch = gr.Button("Evaluate ✨", elem_classes="eval-bt")
# Evaluation Output. Visualisations of success/failures of running evaluation attacks.
with gr.Column(scale=3):
with gr.Row(elem_classes='symbols'):
with gr.Column(scale=10):
gr.Markdown('''<p style="font-size: 18px"><i>The unmodified, original CIFAR-10 images, with model predictions.</i></p><br><br>''')
original_gallery = gr.Gallery(default_clean, label="Original", preview=False, show_download_button=True)
clean_accuracy = gr.Number(1, label="Clean Accuracy", precision=2)
with gr.Column(scale=1, min_width=0, elem_classes='symbols'):
gr.Markdown('''➕''')
with gr.Column(scale=10):
gr.Markdown('''<p style="font-size: 18px"><i>Visual representation of the optimized patch for attacking the model.</i></p><br><br>''')
delta_gallery = gr.Gallery(['./data/patch/patch.png'], label="Patches", preview=True, show_download_button=True)
with gr.Column(scale=1, min_width=0):
gr.Markdown('''🟰''', elem_classes='symbols')
with gr.Column(scale=10):
gr.Markdown('''<p style="font-size: 18px"><i>The original image (with optimized perturbations applied) gives us an adversarial image which fools the model.</i></p>''')
adversarial_gallery = gr.Gallery(default_patch, label="Adversarial", preview=False, show_download_button=True)
robust_accuracy = gr.Number(0.4, label="Robust Accuracy", precision=2)
eval_btn_patch.click(clf_evasion_evaluate, inputs=[attack, max_iter, eps, eps_steps, x_location, y_location, patch_height,
patch_width],
outputs=[original_gallery, adversarial_gallery, delta_gallery, clean_accuracy,
robust_accuracy])
gr.Markdown('''<br/>''')
gr.Markdown('''<p style="font-size: 18px; text-align: center;"><i>⚔️ Want to try out an evasion attack with your own model and data?
Run our <a href="https://github.com/Trusted-AI/adversarial-robustness-toolbox/blob/main/notebooks/hugging_face_evasion.ipynb"
target="_blank">notebooks</a>!</i></p>''')
gr.Markdown('''<br/>''')
if __name__ == "__main__":
# For development
'''demo.launch(show_api=False, debug=True, share=False,
server_name="0.0.0.0",
server_port=7777,
ssl_verify=False,
max_threads=20)'''
# For deployment
demo.launch() |