Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,30 @@
|
|
1 |
from typing import Optional
|
2 |
-
import spaces
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import torch
|
7 |
from PIL import Image
|
8 |
import io
|
9 |
-
|
10 |
-
|
11 |
import base64, os
|
12 |
from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
|
13 |
-
import torch
|
14 |
from PIL import Image
|
15 |
|
16 |
-
# yolo_model = get_yolo_model(model_path='weights/icon_detect/best.pt')
|
17 |
-
# caption_model_processor = get_caption_model_processor(model_name="florence2", model_name_or_path="weights/icon_caption_florence")
|
18 |
-
|
19 |
from ultralytics import YOLO
|
20 |
-
yolo_model = YOLO('weights/icon_detect/best.pt').to('cuda')
|
|
|
21 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
22 |
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
|
23 |
-
model = AutoModelForCausalLM.from_pretrained("weights/icon_caption_florence", torch_dtype=torch.
|
24 |
-
caption_model_processor = {'processor': processor, 'model': model}
|
25 |
-
print('finish loading model!!!')
|
26 |
|
|
|
|
|
27 |
|
28 |
platform = 'pc'
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
}
|
36 |
-
elif platform == 'web':
|
37 |
-
draw_bbox_config = {
|
38 |
-
'text_scale': 0.8,
|
39 |
-
'text_thickness': 2,
|
40 |
-
'text_padding': 3,
|
41 |
-
'thickness': 3,
|
42 |
-
}
|
43 |
-
elif platform == 'mobile':
|
44 |
-
draw_bbox_config = {
|
45 |
-
'text_scale': 0.8,
|
46 |
-
'text_thickness': 2,
|
47 |
-
'text_padding': 3,
|
48 |
-
'thickness': 3,
|
49 |
-
}
|
50 |
-
|
51 |
-
|
52 |
|
53 |
MARKDOWN = """
|
54 |
# OmniParser for Pure Vision Based General GUI Agent 🔥
|
@@ -58,15 +34,10 @@ MARKDOWN = """
|
|
58 |
</a>
|
59 |
</div>
|
60 |
|
61 |
-
OmniParser is a screen parsing tool to convert general GUI
|
62 |
"""
|
63 |
|
64 |
-
# DEVICE = torch.device('cuda')
|
65 |
-
|
66 |
-
# @spaces.GPU
|
67 |
@torch.inference_mode()
|
68 |
-
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
69 |
-
@spaces.GPU(duration=65)
|
70 |
def process(
|
71 |
image_input,
|
72 |
box_threshold,
|
@@ -75,36 +46,48 @@ def process(
|
|
75 |
|
76 |
image_save_path = 'imgs/saved_image_demo.png'
|
77 |
image_input.save(image_save_path)
|
78 |
-
# import pdb; pdb.set_trace()
|
79 |
|
80 |
-
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
text, ocr_bbox = ocr_bbox_rslt
|
82 |
-
|
83 |
-
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
85 |
-
print('
|
86 |
parsed_content_list = '\n'.join(parsed_content_list)
|
87 |
return image, str(parsed_content_list)
|
88 |
|
89 |
-
|
90 |
-
|
91 |
with gr.Blocks() as demo:
|
92 |
gr.Markdown(MARKDOWN)
|
93 |
with gr.Row():
|
94 |
with gr.Column():
|
95 |
-
image_input_component = gr.Image(
|
96 |
-
type='pil', label='Upload image')
|
97 |
-
# set the threshold for removing the bounding boxes with low confidence, default is 0.05
|
98 |
box_threshold_component = gr.Slider(
|
99 |
label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
|
100 |
-
# set the threshold for removing the bounding boxes with large overlap, default is 0.1
|
101 |
iou_threshold_component = gr.Slider(
|
102 |
label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
|
103 |
submit_button_component = gr.Button(
|
104 |
value='Submit', variant='primary')
|
105 |
with gr.Column():
|
106 |
image_output_component = gr.Image(type='pil', label='Image Output')
|
107 |
-
text_output_component = gr.Textbox(
|
|
|
108 |
|
109 |
submit_button_component.click(
|
110 |
fn=process,
|
@@ -116,6 +99,4 @@ with gr.Blocks() as demo:
|
|
116 |
outputs=[image_output_component, text_output_component]
|
117 |
)
|
118 |
|
119 |
-
# demo.launch(debug=False, show_error=True, share=True)
|
120 |
-
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
|
121 |
demo.queue().launch(share=False)
|
|
|
1 |
from typing import Optional
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
from PIL import Image
|
6 |
import io
|
|
|
|
|
7 |
import base64, os
|
8 |
from utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
|
|
|
9 |
from PIL import Image
|
10 |
|
|
|
|
|
|
|
11 |
from ultralytics import YOLO
|
12 |
+
yolo_model = YOLO('weights/icon_detect/best.pt') # Removed .to('cuda')
|
13 |
+
|
14 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
15 |
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
|
16 |
+
model = AutoModelForCausalLM.from_pretrained("weights/icon_caption_florence", torch_dtype=torch.float32, trust_remote_code=True) # Changed dtype to float32 and removed .to('cuda')
|
|
|
|
|
17 |
|
18 |
+
caption_model_processor = {'processor': processor, 'model': model}
|
19 |
+
print('Finished loading model.')
|
20 |
|
21 |
platform = 'pc'
|
22 |
+
draw_bbox_config = {
|
23 |
+
'text_scale': 0.8,
|
24 |
+
'text_thickness': 2,
|
25 |
+
'text_padding': 2,
|
26 |
+
'thickness': 2,
|
27 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
MARKDOWN = """
|
30 |
# OmniParser for Pure Vision Based General GUI Agent 🔥
|
|
|
34 |
</a>
|
35 |
</div>
|
36 |
|
37 |
+
OmniParser is a screen parsing tool to convert general GUI screens to structured elements.
|
38 |
"""
|
39 |
|
|
|
|
|
|
|
40 |
@torch.inference_mode()
|
|
|
|
|
41 |
def process(
|
42 |
image_input,
|
43 |
box_threshold,
|
|
|
46 |
|
47 |
image_save_path = 'imgs/saved_image_demo.png'
|
48 |
image_input.save(image_save_path)
|
|
|
49 |
|
50 |
+
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
|
51 |
+
image_save_path,
|
52 |
+
display_img=False,
|
53 |
+
output_bb_format='xyxy',
|
54 |
+
goal_filtering=None,
|
55 |
+
easyocr_args={'paragraph': False, 'text_threshold': 0.9},
|
56 |
+
use_paddleocr=True
|
57 |
+
)
|
58 |
text, ocr_bbox = ocr_bbox_rslt
|
59 |
+
|
60 |
+
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
|
61 |
+
image_save_path,
|
62 |
+
yolo_model,
|
63 |
+
BOX_TRESHOLD=box_threshold,
|
64 |
+
output_coord_in_ratio=True,
|
65 |
+
ocr_bbox=ocr_bbox,
|
66 |
+
draw_bbox_config=draw_bbox_config,
|
67 |
+
caption_model_processor=caption_model_processor,
|
68 |
+
ocr_text=text,
|
69 |
+
iou_threshold=iou_threshold
|
70 |
+
)
|
71 |
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
72 |
+
print('Finished processing.')
|
73 |
parsed_content_list = '\n'.join(parsed_content_list)
|
74 |
return image, str(parsed_content_list)
|
75 |
|
|
|
|
|
76 |
with gr.Blocks() as demo:
|
77 |
gr.Markdown(MARKDOWN)
|
78 |
with gr.Row():
|
79 |
with gr.Column():
|
80 |
+
image_input_component = gr.Image(type='pil', label='Upload Image')
|
|
|
|
|
81 |
box_threshold_component = gr.Slider(
|
82 |
label='Box Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.05)
|
|
|
83 |
iou_threshold_component = gr.Slider(
|
84 |
label='IOU Threshold', minimum=0.01, maximum=1.0, step=0.01, value=0.1)
|
85 |
submit_button_component = gr.Button(
|
86 |
value='Submit', variant='primary')
|
87 |
with gr.Column():
|
88 |
image_output_component = gr.Image(type='pil', label='Image Output')
|
89 |
+
text_output_component = gr.Textbox(
|
90 |
+
label='Parsed Screen Elements', placeholder='Text Output')
|
91 |
|
92 |
submit_button_component.click(
|
93 |
fn=process,
|
|
|
99 |
outputs=[image_output_component, text_output_component]
|
100 |
)
|
101 |
|
|
|
|
|
102 |
demo.queue().launch(share=False)
|