TopdownAI commited on
Commit
453c0b9
·
verified ·
1 Parent(s): 5fb2ec1

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +68 -0
  2. checkpoint.tar +3 -0
  3. requirements.txt +1 -0
app.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import torch.nn as nn
4
+ import timm
5
+ from torchvision import transforms
6
+ from torchvision.transforms.functional import InterpolationMode
7
+ import gradio as gr
8
+ from PIL import Image
9
+ import torch.nn.functional as F
10
+
11
+ # 전역 설정
12
+ CFG = {
13
+ 'IMG_SIZE': 224
14
+ }
15
+
16
+ class MultiLabelClassificationModel(nn.Module):
17
+ def __init__(self, num_labels):
18
+ super(MultiLabelClassificationModel, self).__init__()
19
+
20
+ # 이미지 특징 추출
21
+ self.cnn = timm.create_model("timm/convnext_base.clip_laion2b_augreg_ft_in12k_in1k", pretrained=True, drop_rate=0.05, drop_path_rate=0.05, in_chans=3)
22
+
23
+ # 멀티 라벨 분류 헤드
24
+ self.classification_head = nn.Linear(1000, num_labels)
25
+
26
+ def forward(self, images):
27
+ # CNN
28
+ features = self.cnn(images)
29
+ features_flat = features.view(features.size(0), -1)
30
+
31
+ # 멀티 라벨 분류
32
+ logits = self.classification_head(features_flat)
33
+ # probs = torch.sigmoid(logits)
34
+
35
+ return logits
36
+
37
+ test_transform = transforms.Compose([
38
+ transforms.Resize(size=(CFG['IMG_SIZE'], CFG['IMG_SIZE']), interpolation=InterpolationMode.BICUBIC),
39
+ transforms.ToTensor(),
40
+ transforms.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]),
41
+ ])
42
+
43
+ model = MultiLabelClassificationModel(num_labels=13)
44
+ model.load_state_dict(torch.load(f'checkpoint.tar')['model_state_dict'])
45
+ model.eval() # 모델을 평가 모드로 설정
46
+
47
+ # 미리 설정한 라벨 목록
48
+ labels = ['Mold', 'blight', 'greening', 'healthy', 'measles',
49
+ 'mildew', 'mite', 'rot', 'rust', 'scab', 'scorch', 'spot', 'virus']
50
+
51
+ def predict(image_path):
52
+ image = Image.open(image_path)
53
+ image = test_transform(image).unsqueeze(0)
54
+ with torch.no_grad():
55
+ logits = model(image)
56
+ probs = F.softmax(logits, dim=1) # softmax를 적용하여 확률 값으로 변환
57
+ result = {label: float(probs[0][i]) for i, label in enumerate(labels)}
58
+ return result
59
+
60
+ app = gr.Interface(
61
+ fn=predict,
62
+ inputs=gr.Image(type='filepath'),
63
+ outputs=gr.Label(),
64
+ title='Multi-Label Image Classification',
65
+ description='Automatically classify images into the following categories: ' + ', '.join(labels) + '.'
66
+ )
67
+
68
+ app.launch(share=True)
checkpoint.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16ff8a0bc11b36857571ace7153d223c26860e7afbffa1de4b16a91ba9e75085
3
+ size 1063686374
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ huggingface_hub