Spaces:
Build error
Build error
wrap automodel for zerogpu
Browse files- langchainapp.py +14 -9
langchainapp.py
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
import spaces
|
3 |
from torch.nn import DataParallel
|
4 |
from torch import Tensor
|
5 |
-
|
6 |
from huggingface_hub import InferenceClient
|
7 |
from openai import OpenAI
|
8 |
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
@@ -43,18 +43,20 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
43 |
### Utils
|
44 |
hf_token, yi_token = load_env_variables()
|
45 |
|
|
|
|
|
|
|
|
|
46 |
@spaces.GPU
|
47 |
def load_model():
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
return
|
53 |
|
54 |
# Load model
|
55 |
nvidiamodel = load_model()
|
56 |
-
# Load model
|
57 |
-
nvidiamodel = load_model()
|
58 |
# nvidiamodel.set_pooling_include_prompt(include_prompt=False)
|
59 |
|
60 |
def clear_cuda_cache():
|
@@ -66,7 +68,8 @@ chroma_client = chromadb.Client(Settings())
|
|
66 |
|
67 |
# Create a collection
|
68 |
chroma_collection = chroma_client.create_collection("all-my-documents")
|
69 |
-
|
|
|
70 |
class MyEmbeddingFunction(EmbeddingFunction):
|
71 |
def __init__(self, model_name: str, token: str, intention_client):
|
72 |
self.model_name = model_name
|
@@ -156,6 +159,7 @@ def add_documents_to_chroma(documents: list, embedding_function: MyEmbeddingFunc
|
|
156 |
)
|
157 |
|
158 |
def query_chroma(query_text: str, embedding_function: MyEmbeddingFunction):
|
|
|
159 |
query_embeddings, query_metadata = embedding_function.compute_embeddings(query_text)
|
160 |
result_docs = chroma_collection.query(
|
161 |
query_texts=[query_text],
|
@@ -208,6 +212,7 @@ def upload_documents(files):
|
|
208 |
return "Documents uploaded and processed successfully!"
|
209 |
|
210 |
def query_documents(query):
|
|
|
211 |
results = query_chroma(query)
|
212 |
return "\n\n".join([result.content for result in results])
|
213 |
|
|
|
2 |
import spaces
|
3 |
from torch.nn import DataParallel
|
4 |
from torch import Tensor
|
5 |
+
from transformers import AutoTokenizer, AutoModel
|
6 |
from huggingface_hub import InferenceClient
|
7 |
from openai import OpenAI
|
8 |
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
|
|
43 |
### Utils
|
44 |
hf_token, yi_token = load_env_variables()
|
45 |
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token, trust_remote_code=True)
|
47 |
+
# Lazy load model
|
48 |
+
model = None
|
49 |
+
|
50 |
@spaces.GPU
|
51 |
def load_model():
|
52 |
+
global model
|
53 |
+
if model is None:
|
54 |
+
from transformers import AutoModel
|
55 |
+
model = AutoModel.from_pretrained(model_name, token=hf_token, trust_remote_code=True).to(device)
|
56 |
+
return model
|
57 |
|
58 |
# Load model
|
59 |
nvidiamodel = load_model()
|
|
|
|
|
60 |
# nvidiamodel.set_pooling_include_prompt(include_prompt=False)
|
61 |
|
62 |
def clear_cuda_cache():
|
|
|
68 |
|
69 |
# Create a collection
|
70 |
chroma_collection = chroma_client.create_collection("all-my-documents")
|
71 |
+
|
72 |
+
@spaces.GPU
|
73 |
class MyEmbeddingFunction(EmbeddingFunction):
|
74 |
def __init__(self, model_name: str, token: str, intention_client):
|
75 |
self.model_name = model_name
|
|
|
159 |
)
|
160 |
|
161 |
def query_chroma(query_text: str, embedding_function: MyEmbeddingFunction):
|
162 |
+
model = load_model()
|
163 |
query_embeddings, query_metadata = embedding_function.compute_embeddings(query_text)
|
164 |
result_docs = chroma_collection.query(
|
165 |
query_texts=[query_text],
|
|
|
212 |
return "Documents uploaded and processed successfully!"
|
213 |
|
214 |
def query_documents(query):
|
215 |
+
model = load_model()
|
216 |
results = query_chroma(query)
|
217 |
return "\n\n".join([result.content for result in results])
|
218 |
|