File size: 9,313 Bytes
a6d437d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# app.py
import os
import re
import uuid
import gradio as gr
import torch
import torch.nn.functional as F
from dotenv import load_dotenv
from typing import List, Tuple, Dict, Any
from transformers import AutoTokenizer, AutoModel
from openai import OpenAI
from langchain_community.document_loaders import UnstructuredFileLoader
from langchain_chroma import Chroma
from chromadb import Documents, EmbeddingFunction, Embeddings
from chromadb.config import Settings
import chromadb
from utils import load_env_variables, parse_and_route, escape_special_characters
from globalvars import API_BASE, intention_prompt, tasks, system_message, metadata_prompt, model_name
import spaces
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain_community.document_compressors.jina_rerank import JinaRerank
from langchain import hub
from langchain.chains import create_retrieval_chain
from langchain.chains.retrieval import create_stuff_documents_chain

load_dotenv()

# os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:180'
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# os.environ['CUDA_CACHE_DISABLE'] = '1'

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

hf_token, yi_token = load_env_variables()

tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token, trust_remote_code=True)
model = None

@spaces.GPU
def load_model():
    global model
    if model is None:
        model = AutoModel.from_pretrained(model_name, token=hf_token, trust_remote_code=True).to(device)
    return model

# Load model
jina_model = load_model()

def clear_cuda_cache():
    torch.cuda.empty_cache()

client = OpenAI(api_key=yi_token, base_url=API_BASE)

chroma_client = chromadb.Client(Settings())

chroma_collection = chroma_client.create_collection("all-my-documents")

class JinaEmbeddingFunction(EmbeddingFunction):
    def __init__(self, model, tokenizer, intention_client):
        self.model = model
        self.tokenizer = tokenizer
        self.intention_client = intention_client

    def __call__(self, input: Documents) -> Tuple[List[List[float]], List[Dict[str, Any]]]:
        embeddings_with_metadata = [self.compute_embeddings(doc) for doc in input]
        embeddings = [item[0] for item in embeddings_with_metadata]
        metadata = [item[1] for item in embeddings_with_metadata]
        return embeddings, metadata

    @spaces.GPU
    def compute_embeddings(self, input_text: str):
        escaped_input_text = escape_special_characters(input_text)

        # Get the intention
        intention_completion = self.intention_client.chat.completions.create(
            model="yi-large",
            messages=[
                {"role": "system", "content": escape_special_characters(intention_prompt)},
                {"role": "user", "content": escaped_input_text}
            ]
        )
        intention_output = intention_completion.choices[0].message.content
        parsed_task = parse_and_route(intention_output)
        selected_task = parsed_task if parsed_task in tasks else "DEFAULT"
        task = tasks[selected_task]

        # Get the metadata
        metadata_completion = self.intention_client.chat.completions.create(
            model="yi-large",
            messages=[
                {"role": "system", "content": escape_special_characters(metadata_prompt)},
                {"role": "user", "content": escaped_input_text}
            ]
        )
        metadata_output = metadata_completion.choices[0].message.content
        metadata = self.extract_metadata(metadata_output)

        # Compute embeddings using Jina model
        encoded_input = self.tokenizer(escaped_input_text, padding=True, truncation=True, return_tensors="pt").to(device)
        with torch.no_grad():
            model_output = self.model(**encoded_input, task=task)

        embeddings = self.mean_pooling(model_output, encoded_input["attention_mask"])
        embeddings = F.normalize(embeddings, p=2, dim=1)

        return embeddings.cpu().numpy().tolist()[0], metadata

    def extract_metadata(self, metadata_output: str) -> Dict[str, str]:
        pattern = re.compile(r'\"(\w+)\": \"([^\"]+)\"')
        matches = pattern.findall(metadata_output)
        metadata = {key: value for key, value in matches}
        return metadata

    @staticmethod
    def mean_pooling(model_output, attention_mask):
        token_embeddings = model_output[0]
        input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

def load_documents(file_path: str, mode: str = "elements"):
    loader = UnstructuredFileLoader(file_path, mode=mode)
    docs = loader.load()
    return [doc.page_content for doc in docs]

def initialize_chroma(collection_name: str, embedding_function: JinaEmbeddingFunction):
    db = Chroma(client=chroma_client, collection_name=collection_name, embedding_function=embedding_function)
    return db

@spaces.GPU
def add_documents_to_chroma(documents: list, embedding_function: JinaEmbeddingFunction):
    for doc in documents:
        embeddings, metadata = embedding_function.compute_embeddings(doc)
        chroma_collection.add(
            ids=[str(uuid.uuid1())],
            documents=[doc],
            embeddings=[embeddings],
            metadatas=[metadata]
        )

@spaces.GPU
def rerank_documents(query: str, documents: List[str]) -> List[str]:
    compressor = JinaRerank()
    retriever = chroma_db.as_retriever(search_kwargs={"k": 20})
    compression_retriever = ContextualCompressionRetriever(
        base_compressor=compressor, base_retriever=retriever
    )
    
    compressed_docs = compression_retriever.get_relevant_documents(query)
    
    return [doc.page_content for doc in compressed_docs]

def query_chroma(query_text: str, embedding_function: JinaEmbeddingFunction):
    query_embeddings, query_metadata = embedding_function.compute_embeddings(query_text)
    result_docs = chroma_collection.query(
        query_embeddings=[query_embeddings],
        n_results=3
    )
    return result_docs

@spaces.GPU
def answer_query(message: str, chat_history: List[Tuple[str, str]], system_message: str, max_new_tokens: int, temperature: float, top_p: float):
    # Query Chroma for relevant documents
    results = query_chroma(message, embedding_function)
    context = "\n\n".join([result['document'] for result in results['documents'][0]])

    # Rerank the documents
    reranked_docs = rerank_documents(message, context.split("\n\n"))
    reranked_context = "\n\n".join(reranked_docs)

    # Prepare the prompt for YI model
    prompt = f"{system_message}\n\nContext: {reranked_context}\n\nHuman: {message}\n\nAssistant:"

    # Generate response using YI model
    response = client.chat.completions.create(
        model="yi-large",
        messages=[
            {"role": "system", "content": system_message},
            {"role": "user", "content": f"Context: {reranked_context}\n\nHuman: {message}"}
        ],
        max_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p
    )

    assistant_response = response.choices[0].message.content
    chat_history.append((message, assistant_response))
    return "", chat_history

# Initialize clients
intention_client = OpenAI(api_key=yi_token, base_url=API_BASE)
embedding_function = JinaEmbeddingFunction(jina_model, tokenizer, intention_client)
chroma_db = initialize_chroma(collection_name="Jina-embeddings", embedding_function=embedding_function)

@spaces.GPU
def upload_documents(files):
    for file in files:
        loader = UnstructuredFileLoader(file.name)
        documents = loader.load()
        add_documents_to_chroma([doc.page_content for doc in documents], embedding_function)
    return "Documents uploaded and processed successfully!"

@spaces.GPU
def query_documents(query):
    results = query_chroma(query, embedding_function)
    reranked_docs = rerank_documents(query, [result for result in results['documents'][0]])
    return "\n\n".join(reranked_docs)

with gr.Blocks() as demo:
    with gr.Tab("Upload Documents"):
        document_upload = gr.File(file_count="multiple", file_types=["document"])
        upload_button = gr.Button("Upload and Process")
        upload_button.click(upload_documents, inputs=document_upload, outputs=gr.Text())

    with gr.Tab("Ask Questions"):
        with gr.Row():
            chat_interface = gr.ChatInterface(
                answer_query,
                additional_inputs=[
                    gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
                    gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
                    gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
                    gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
                ],
            )
            query_input = gr.Textbox(label="Query")
            query_button = gr.Button("Query")
            query_output = gr.Textbox()
            query_button.click(query_documents, inputs=query_input, outputs=query_output)

if __name__ == "__main__":
    demo.launch()