Tonic commited on
Commit
ae2f848
·
verified ·
1 Parent(s): 70085b0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -24,8 +24,8 @@ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloa
24
  @torch.inference_mode()
25
  @spaces.GPU
26
  def predict_math_bot(user_message, system_message="", max_new_tokens=125, temperature=0.1, top_p=0.9, repetition_penalty=1.9, do_sample=False):
27
- prompt = f"<s><INST>{user_message}{system_message}<\INST>" if system_message else user_message
28
- inputs = tokenizer(prompt, return_tensors='pt', add_special_tokens=False)
29
  input_ids = inputs["input_ids"].to(model.device)
30
 
31
  output_ids = model.generate(
@@ -44,7 +44,9 @@ def predict_math_bot(user_message, system_message="", max_new_tokens=125, temper
44
  def main():
45
  with gr.Blocks() as demo:
46
  gr.Markdown(title)
47
- output_text = RichTextbox(label="🫡📉MetaMath", interactive=True)
 
 
48
 
49
  with gr.Accordion("Advanced Settings"):
50
  with gr.Row():
@@ -53,14 +55,13 @@ def main():
53
  top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99)
54
  repetition_penalty = gr.Slider(label="Repetition penalty", value=1.9, minimum=1.0, maximum=2.0)
55
  do_sample = gr.Checkbox(label="Uncheck for faster inference", value=False)
56
- with gr.Row():
57
- user_message = gr.Textbox(label="🫡Your Message", lines=3, placeholder="Enter your math query here...")
58
- system_message = gr.Textbox(label="📉System Prompt", lines=2, placeholder="Optional: Set a scene or introduce a character...")
59
  gr.Button("Try🫡📉MetaMath").click(
60
  predict_math_bot,
61
  inputs=[user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample],
62
  outputs=output_text
63
- )
 
 
64
  demo.launch()
65
 
66
  if __name__ == "__main__":
 
24
  @torch.inference_mode()
25
  @spaces.GPU
26
  def predict_math_bot(user_message, system_message="", max_new_tokens=125, temperature=0.1, top_p=0.9, repetition_penalty=1.9, do_sample=False):
27
+ prompt = f"<|user|>{user_message}\n<|system|>{system_message}\n<|assistant|>\n" if system_message else user_message
28
+ inputs = tokenizer(prompt, return_tensors='pt', add_special_tokens=True)
29
  input_ids = inputs["input_ids"].to(model.device)
30
 
31
  output_ids = model.generate(
 
44
  def main():
45
  with gr.Blocks() as demo:
46
  gr.Markdown(title)
47
+ with gr.Row():
48
+ user_message = gr.Code(label="🫡Enter your math query here...", language = "r" , lines=3, value="""F(x) &= \int^a_b \frac{1}{3}x^3""")
49
+ system_message = gr.Textbox(label="📉System Prompt", lines=2, placeholder="Optional: give precise instructions to resolve the problem provided above:")
50
 
51
  with gr.Accordion("Advanced Settings"):
52
  with gr.Row():
 
55
  top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99)
56
  repetition_penalty = gr.Slider(label="Repetition penalty", value=1.9, minimum=1.0, maximum=2.0)
57
  do_sample = gr.Checkbox(label="Uncheck for faster inference", value=False)
 
 
 
58
  gr.Button("Try🫡📉MetaMath").click(
59
  predict_math_bot,
60
  inputs=[user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample],
61
  outputs=output_text
62
+ )
63
+ output_text = RichTextbox(label="🫡📉MetaMath", interactive=True)
64
+
65
  demo.launch()
66
 
67
  if __name__ == "__main__":