File size: 4,348 Bytes
ac3b484
 
 
f8adeca
4b1a870
 
 
 
 
 
 
 
 
 
f8adeca
 
4b1a870
b5c010e
 
5077254
 
 
f68032d
 
 
 
 
 
 
 
 
 
 
 
672d17d
 
 
 
 
 
4b1a870
b5c010e
 
672d17d
f8adeca
6b59e6e
 
 
4b1a870
 
 
 
 
 
 
 
 
 
 
5077254
4b1a870
6b59e6e
 
 
 
 
 
 
 
 
 
 
 
 
4b1a870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
672d17d
 
2ac2a22
 
4b1a870
 
 
 
f68032d
 
b5c010e
4b1a870
b5c010e
4b1a870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
672d17d
2ac2a22
4b1a870
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# conda activate audio
# pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
import llama_cpp
import os
import json
import subprocess
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download

huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

hf_hub_download(
    repo_id="Qwen/Qwen2-0.5B-Instruct-GGUF",
    filename="qwen2-0_5b-instruct-q4_k_m.gguf",
    local_dir="./models"
)

hf_hub_download(
    repo_id="TobDeBer/gpt2-Q4_K_M-GGUF",
    filename="gpt2-q4_k_m.gguf",
    local_dir="./models"
)

hf_hub_download(
    repo_id="TobDeBer/Meta-Llama-3.1-8B-Instruct-Q4_K_M-GGUF",
    filename="meta-llama-3.1-8b-instruct-q4_k_m.gguf",
    local_dir="./models",
    token=huggingface_token
)
# 5GB


# RichardErkhov/ibm-granite_-_granite-7b-base-gguf
# granite-7b-base.Q4_K_M.gguf
# 4GB

# TobDeBer/granite-8b-code-instruct-128k-Q4_K_M-GGUF
# granite-8b-code-instruct-128k-q4_k_m.gguf
# 5GB

llm = None
llm_model = None

def respond(
    message,
    history: list[tuple[str, str]],
    model,
    system_message,
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
):
    chat_template = MessagesFormatterType.GEMMA_2

    global llm
    global llm_model
    
    if llm is None or llm_model != model:
        llm = Llama(
            model_path=f"models/{model}",
            flash_attn=True,
            n_gpu_layers=81,
            n_batch=1024,
            n_ctx=8192,
        )
        llm_model = model

    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt=f"{system_message}",
        predefined_messages_formatter_type=chat_template,
        debug_output=True
    )
    
    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()

    for msn in history:
        user = {
            'role': Roles.user,
            'content': msn[0]
        }
        assistant = {
            'role': Roles.assistant,
            'content': msn[1]
        }
        messages.add_message(user)
        messages.add_message(assistant)
    
    stream = agent.get_chat_response(
        message,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=False
    )
    
    outputs = ""
    for output in stream:
        outputs += output
        yield outputs

description = """<p align="center">Defaults to Qwen 500M<br>
More models in Advanced Section <br></p>
"""

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Dropdown([
                'qwen2-0_5b-instruct-q4_k_m.gguf',
				'gpt2-q4_k_m.gguf',
                'meta-llama-3.1-8b-instruct-q4_k_m.gguf',
            ],
            value="qwen2-0_5b-instruct-q4_k_m.gguf",
            label="Model"
        ),
        gr.Textbox(value="You are a helpful assistant.", label="System message"),
        gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
        ),
        gr.Slider(
            minimum=0,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition penalty",
        ),
    ],
    retry_btn="Retry",
    undo_btn="Undo",
    clear_btn="Clear",
    submit_btn="Send",
    title="Chat with Qwen 2 and friends using llama.cpp", 
    description=description,
    chatbot=gr.Chatbot(
        scale=1, 
        likeable=False,
        show_copy_button=True
    )
)

if __name__ == "__main__":
    demo.launch()