Spaces:
TirthGPT
/
Runtime error

File size: 6,632 Bytes
2a8a75a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5236d2
2a8a75a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5236d2
 
2a8a75a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5236d2
2a8a75a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
from libs.base_utils import do_resize_content
from imagedream.ldm.util import (
    instantiate_from_config,
    get_obj_from_str,
)
from omegaconf import OmegaConf
from PIL import Image
import numpy as np


class TwoStagePipeline(object):
    def __init__(
        self,
        stage1_model_config,
        stage2_model_config,
        stage1_sampler_config,
        stage2_sampler_config,
        device="cuda",
        dtype=torch.float16,
        resize_rate=1,
    ) -> None:
        """
        only for two stage generate process.
        - the first stage was condition on single pixel image, gererate multi-view pixel image, based on the v2pp config
        - the second stage was condition on multiview pixel image generated by the first stage, generate the final image, based on the stage2-test config
        """
        self.resize_rate = resize_rate

        self.stage1_model = instantiate_from_config(OmegaConf.load(stage1_model_config.config).model)
        self.stage1_model.load_state_dict(torch.load(stage1_model_config.resume, map_location="cpu"), strict=False)
        self.stage1_model = self.stage1_model.to(device).to(dtype)

        self.stage2_model = instantiate_from_config(OmegaConf.load(stage2_model_config.config).model)
        sd = torch.load(stage2_model_config.resume, map_location="cpu")
        self.stage2_model.load_state_dict(sd, strict=False)
        self.stage2_model = self.stage2_model.to(device).to(dtype)

        self.stage1_model.device = device
        self.stage2_model.device = device
        self.device = device
        self.dtype = dtype
        self.stage1_sampler = get_obj_from_str(stage1_sampler_config.target)(
            self.stage1_model, device=device, dtype=dtype, **stage1_sampler_config.params
        )
        self.stage2_sampler = get_obj_from_str(stage2_sampler_config.target)(
            self.stage2_model, device=device, dtype=dtype, **stage2_sampler_config.params
        )

    def stage1_sample(
        self,
        pixel_img,
        prompt="3D assets",
        neg_texts="uniform low no texture ugly, boring, bad anatomy, blurry, pixelated,  obscure, unnatural colors, poor lighting, dull, and unclear.",
        step=50,
        scale=5,
        ddim_eta=0.0,
    ):
        if type(pixel_img) == str:
            pixel_img = Image.open(pixel_img)

        if isinstance(pixel_img, Image.Image):
            if pixel_img.mode == "RGBA":
                background = Image.new('RGBA', pixel_img.size, (0, 0, 0, 0))
                pixel_img = Image.alpha_composite(background, pixel_img).convert("RGB")
            else:
                pixel_img = pixel_img.convert("RGB")
        else:
            raise
        uc = self.stage1_sampler.model.get_learned_conditioning([neg_texts]).to(self.device)
        stage1_images = self.stage1_sampler.i2i(
            self.stage1_sampler.model,
            self.stage1_sampler.size,
            prompt,
            uc=uc,
            sampler=self.stage1_sampler.sampler,
            ip=pixel_img,
            step=step,
            scale=scale,
            batch_size=self.stage1_sampler.batch_size,
            ddim_eta=ddim_eta,
            dtype=self.stage1_sampler.dtype,
            device=self.stage1_sampler.device,
            camera=self.stage1_sampler.camera,
            num_frames=self.stage1_sampler.num_frames,
            pixel_control=(self.stage1_sampler.mode == "pixel"),
            transform=self.stage1_sampler.image_transform,
            offset_noise=self.stage1_sampler.offset_noise,
        )

        stage1_images = [Image.fromarray(img) for img in stage1_images]
        stage1_images.pop(self.stage1_sampler.ref_position)
        return stage1_images

    def stage2_sample(self, pixel_img, stage1_images, scale=5, step=50):
        if type(pixel_img) == str:
            pixel_img = Image.open(pixel_img)

        if isinstance(pixel_img, Image.Image):
            if pixel_img.mode == "RGBA":
                background = Image.new('RGBA', pixel_img.size, (0, 0, 0, 0))
                pixel_img = Image.alpha_composite(background, pixel_img).convert("RGB")
            else:
                pixel_img = pixel_img.convert("RGB")
        else:
            raise
        stage2_images = self.stage2_sampler.i2iStage2(
            self.stage2_sampler.model,
            self.stage2_sampler.size,
            "3D assets",
            self.stage2_sampler.uc,
            self.stage2_sampler.sampler,
            pixel_images=stage1_images,
            ip=pixel_img,
            step=step,
            scale=scale,
            batch_size=self.stage2_sampler.batch_size,
            ddim_eta=0.0,
            dtype=self.stage2_sampler.dtype,
            device=self.stage2_sampler.device,
            camera=self.stage2_sampler.camera,
            num_frames=self.stage2_sampler.num_frames,
            pixel_control=(self.stage2_sampler.mode == "pixel"),
            transform=self.stage2_sampler.image_transform,
            offset_noise=self.stage2_sampler.offset_noise,
        )
        stage2_images = [Image.fromarray(img) for img in stage2_images]
        return stage2_images

    def set_seed(self, seed):
        self.stage1_sampler.seed = seed
        self.stage2_sampler.seed = seed

    def __call__(self, pixel_img, prompt="3D assets", scale=5, step=50):
        pixel_img = do_resize_content(pixel_img, self.resize_rate)
        stage1_images = self.stage1_sample(pixel_img, prompt, scale=scale, step=step)
        stage2_images = self.stage2_sample(pixel_img, stage1_images, scale=scale, step=step)

        return {
            "ref_img": pixel_img,
            "stage1_images": stage1_images,
            "stage2_images": stage2_images,
        }


if __name__ == "__main__":

    stage1_config = OmegaConf.load("configs/nf7_v3_SNR_rd_size_stroke.yaml").config
    stage2_config = OmegaConf.load("configs/stage2-v2-snr.yaml").config
    stage2_sampler_config = stage2_config.sampler
    stage1_sampler_config = stage1_config.sampler

    stage1_model_config = stage1_config.models
    stage2_model_config = stage2_config.models

    pipeline = TwoStagePipeline(
        stage1_model_config,
        stage2_model_config,
        stage1_sampler_config,
        stage2_sampler_config,
    )

    img = Image.open("assets/astronaut.png")
    rt_dict = pipeline(img)
    stage1_images = rt_dict["stage1_images"]
    stage2_images = rt_dict["stage2_images"]
    np_imgs = np.concatenate(stage1_images, 1)
    np_xyzs = np.concatenate(stage2_images, 1)
    Image.fromarray(np_imgs).save("pixel_images.png")
    Image.fromarray(np_xyzs).save("xyz_images.png")