import gradio as gr import pandas as pd from haystack.schema import Answer from haystack.document_stores import InMemoryDocumentStore from haystack.pipeline import FAQPipeline from haystack.retriever.dense import EmbeddingRetriever from haystack.utils import print_answers import logging #Haystack function calls - streamlit structure from Tuana GoT QA Haystack demo @st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None},allow_output_mutation=True) # use streamlit cache def start_haystack(): document_store = InMemoryDocumentStore(index="document", embedding_field='embedding', embedding_dim=384, similarity='cosine') retriever = EmbeddingRetriever(document_store=document_store, embedding_model='sentence-transformers/all-MiniLM-L6-v2', use_gpu=True, top_k=1) load_data_to_store(document_store,retriever) pipeline = FAQPipeline(retriever=retriever) return pipeline def load_data_to_store(document_store, retriever): df = pd.read_csv('monopoly_qa-v1.csv') questions = list(df.Question) df['embedding'] = retriever.embed_queries(texts=questions) df = df.rename(columns={"Question":"content","Answer":"answer"}) df.drop('link to source (to prevent duplicate sources)',axis=1, inplace=True) dicts = df.to_dict(orient="records") document_store.write_documents(dicts) pipeline = start_haystack() def predict(question): predictions = pipeline.run(question) answer = predictions["answers"] return answer gr.Interface( predict, inputs=gr.inputs.Textbox(label="enter your monopoly question here"), outputs=gr.outputs.Label(num_top_classes=1), title="Monopoly FAQ Semantic Search", ).launch()