Timjo88 commited on
Commit
8156e34
Β·
1 Parent(s): f291d33

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -14
app.py CHANGED
@@ -3,8 +3,8 @@ import pandas as pd
3
 
4
  from haystack.schema import Answer
5
  from haystack.document_stores import InMemoryDocumentStore
6
- from haystack.pipelines import FAQPipeline
7
- from haystack.retriever.dense import EmbeddingRetriever
8
  from haystack.utils import print_answers
9
  import logging
10
 
@@ -15,7 +15,7 @@ def start_haystack():
15
  retriever = EmbeddingRetriever(document_store=document_store, embedding_model='sentence-transformers/all-MiniLM-L6-v2', use_gpu=True, top_k=1)
16
  load_data_to_store(document_store,retriever)
17
  pipeline = FAQPipeline(retriever=retriever)
18
- return pipeline
19
 
20
  def load_data_to_store(document_store, retriever):
21
  df = pd.read_csv('monopoly_qa-v1.csv')
@@ -26,11 +26,11 @@ def load_data_to_store(document_store, retriever):
26
 
27
  dicts = df.to_dict(orient="records")
28
  document_store.write_documents(dicts)
 
 
29
 
30
- pipeline = start_haystack()
31
-
32
- def predict(question):
33
- prediction = pipeline.run(question)
34
  answer = prediction["answers"][0].meta
35
  faq_response = "FAQ Question: " + answer["query"] + "\n"+"Answer: " + answer["answer"]
36
  return faq_response
@@ -39,10 +39,14 @@ input_question =gr.inputs.Textbox(label="enter your monopoly question here")
39
  response = "text"
40
  examples = ["how much cash do we get to start with?", "at what point can I buy houses?", "what happens when I land on free parking?"]
41
 
42
- gr.Interface(
43
- fn=predict,
44
- inputs=input_question,
45
- outputs=response,
46
- examples=examples,
47
- title="Monopoly FAQ Semantic Search",
48
- ).launch()
 
 
 
 
 
3
 
4
  from haystack.schema import Answer
5
  from haystack.document_stores import InMemoryDocumentStore
6
+ from haystack.pipelines import FAQPipeline, ExtractiveQAPipeline
7
+ from haystack.nodes import EmbeddingRetriever, TfidfRetriever, FARMReader
8
  from haystack.utils import print_answers
9
  import logging
10
 
 
15
  retriever = EmbeddingRetriever(document_store=document_store, embedding_model='sentence-transformers/all-MiniLM-L6-v2', use_gpu=True, top_k=1)
16
  load_data_to_store(document_store,retriever)
17
  pipeline = FAQPipeline(retriever=retriever)
18
+ return pipeline, document_store
19
 
20
  def load_data_to_store(document_store, retriever):
21
  df = pd.read_csv('monopoly_qa-v1.csv')
 
26
 
27
  dicts = df.to_dict(orient="records")
28
  document_store.write_documents(dicts)
29
+
30
+ faq_pipeline, doc_store = start_haystack()
31
 
32
+ def predict_faq(question):
33
+ prediction = faq_pipeline.run(question)
 
 
34
  answer = prediction["answers"][0].meta
35
  faq_response = "FAQ Question: " + answer["query"] + "\n"+"Answer: " + answer["answer"]
36
  return faq_response
 
39
  response = "text"
40
  examples = ["how much cash do we get to start with?", "at what point can I buy houses?", "what happens when I land on free parking?"]
41
 
42
+ mon_faq = gr.Interface(
43
+ fn=predict_faq,
44
+ inputs=input_question,
45
+ outputs=response,
46
+ examples=examples,
47
+ title="Monopoly FAQ Semantic Search")
48
+
49
+ feedback_answer =
50
+
51
+ def return_feedback(input_question,feedback_answer):
52
+