import os import glob from typing import List from multiprocessing import Pool from tqdm import tqdm from langchain.document_loaders import ( CSVLoader, EverNoteLoader, PyMuPDFLoader, TextLoader, UnstructuredEmailLoader, UnstructuredEPubLoader, UnstructuredHTMLLoader, UnstructuredMarkdownLoader, UnstructuredODTLoader, UnstructuredPowerPointLoader, UnstructuredWordDocumentLoader, ) from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings from langchain.docstore.document import Document from constants import CHROMA_SETTINGS # Load environment variables persist_directory = os.environ.get('PERSIST_DIRECTORY', 'db') source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents') embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME', 'all-MiniLM-L6-v2') chunk_size = 500 chunk_overlap = 50 # Custom document loaders class MyElmLoader(UnstructuredEmailLoader): """Wrapper to fallback to text/plain when default does not work""" def load(self) -> List[Document]: """Wrapper adding fallback for elm without html""" try: try: doc = UnstructuredEmailLoader.load(self) except ValueError as e: if 'text/html content not found in email' in str(e): # Try plain text self.unstructured_kwargs["content_source"]="text/plain" doc = UnstructuredEmailLoader.load(self) else: raise except Exception as e: # Add file_path to exception message raise type(e)(f"{self.file_path}: {e}") from e return doc # Map file extensions to document loaders and their arguments LOADER_MAPPING = { ".csv": (CSVLoader, {}), # ".docx": (Docx2txtLoader, {}), ".doc": (UnstructuredWordDocumentLoader, {}), ".docx": (UnstructuredWordDocumentLoader, {}), ".enex": (EverNoteLoader, {}), ".eml": (MyElmLoader, {}), ".epub": (UnstructuredEPubLoader, {}), ".html": (UnstructuredHTMLLoader, {}), ".md": (UnstructuredMarkdownLoader, {}), ".odt": (UnstructuredODTLoader, {}), ".pdf": (PyMuPDFLoader, {}), ".ppt": (UnstructuredPowerPointLoader, {}), ".pptx": (UnstructuredPowerPointLoader, {}), ".txt": (TextLoader, {"encoding": "utf8"}), # Add more mappings for other file extensions and loaders as needed } # Loads a single doc from specified file path def load_single_document(file_path: str) -> List[Document]: # Return a list of 'Document' objects ext = "." + file_path.rsplit(".", 1)[-1] if ext in LOADER_MAPPING: loader_class, loader_args = LOADER_MAPPING[ext] loader = loader_class(file_path, **loader_args) return loader.load() raise ValueError(f"Unsupported file extension '{ext}'") # If there's more than 1 doc, loads all docs from a source dir, optionally ignore specific files def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]: """ Loads all documents from the source documents directory, ignoring specified files """ all_files = [] for ext in LOADER_MAPPING: all_files.extend( glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True) ) filtered_files = [file_path for file_path in all_files if file_path not in ignored_files] # Parallel processing with Pool(processes=os.cpu_count()) as pool: results = [] with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar: for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)): # Call loan_single_document for each file path in parallel results.extend(docs) pbar.update() return results # Loads docs from source_directory using load_document def process_documents(ignored_files: List[str] = []) -> List[Document]: """ Load documents and split in chunks """ print(f"Loading documents from {source_directory}") documents = load_documents(source_directory, ignored_files) if not documents: print("No new documents to load") exit(0) print(f"Loaded {len(documents)} new documents from {source_directory}") text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) # split the docs into text chunks texts = text_splitter.split_documents(documents) print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)") return texts # return a list of split text chunks def does_vectorstore_exist(persist_directory: str) -> bool: """ Checks if vectorstore exists """ # verifies the presence of necessary files and folders for a valid vectorstore if os.path.exists(os.path.join(persist_directory, 'index')): if os.path.exists(os.path.join(persist_directory, 'chroma-collections.parquet')) and os.path.exists(os.path.join(persist_directory, 'chroma-embeddings.parquet')): list_index_files = glob.glob(os.path.join(persist_directory, 'index/*.bin')) list_index_files += glob.glob(os.path.join(persist_directory, 'index/*.pkl')) # At least 3 documents are needed in a working vectorstore if len(list_index_files) > 3: return True return False def main(): # Create embeddings embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name) if does_vectorstore_exist(persist_directory): # Update and store locally vectorstore print(f"Appending to existing vectorstore at {persist_directory}") db = Chroma(persist_directory=persist_directory, embedding_function=embeddings) collection = db.get() texts = process_documents([metadata['source'] for metadata in collection['metadatas']]) print(f"Creating embeddings. May take some minutes...") db.add_documents(texts) else: # Create and store locally vectorstore print("Creating new vectorstore") texts = process_documents() print(f"Creating embeddings. May take some minutes...") db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory) db.persist() db = None print(f"Ingestion complete! You can now run privateGPT.py to query your documents") if __name__ == "__main__": main()