Spaces:
Runtime error
Runtime error
Upload 13 files
Browse files- .gitattributes +1 -0
- Dockerfile +22 -0
- app.py +128 -0
- constants.py +11 -0
- db/.DS_Store +0 -0
- db/b7134628-7a61-4630-adf2-934fde432f96/data_level0.bin +3 -0
- db/b7134628-7a61-4630-adf2-934fde432f96/header.bin +3 -0
- db/b7134628-7a61-4630-adf2-934fde432f96/index_metadata.pickle +3 -0
- db/b7134628-7a61-4630-adf2-934fde432f96/length.bin +3 -0
- db/b7134628-7a61-4630-adf2-934fde432f96/link_lists.bin +3 -0
- db/chroma.sqlite3 +3 -0
- ingest.py +164 -0
- requirements.txt +14 -0
- source_documents/The Personal MBA.pdf +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
db/chroma.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11.5
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
COPY ./requirements.txt /app/requirements.txt
|
6 |
+
|
7 |
+
RUN pip3 install --no-cache-dir -r /app/requirements.txt
|
8 |
+
|
9 |
+
# User
|
10 |
+
RUN useradd -m -u 1000 user
|
11 |
+
USER user
|
12 |
+
ENV HOME /home/user
|
13 |
+
ENV PATH $HOME/.local/bin:$PATH
|
14 |
+
|
15 |
+
WORKDIR $HOME
|
16 |
+
RUN mkdir app
|
17 |
+
WORKDIR $HOME/app
|
18 |
+
COPY . $HOME/app
|
19 |
+
|
20 |
+
EXPOSE 7860
|
21 |
+
CMD ["streamlit", "run", "app.py", "--host", "0.0.0.0", "--port", "7860"]
|
22 |
+
|
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# __import__('pysqlite3')
|
2 |
+
# import sys
|
3 |
+
# sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
4 |
+
|
5 |
+
# modify comment
|
6 |
+
|
7 |
+
import streamlit as st
|
8 |
+
from langchain.llms import Ollama
|
9 |
+
import os
|
10 |
+
import chromadb
|
11 |
+
from constants import CHROMA_SETTINGS
|
12 |
+
from langchain.chains import RetrievalQA
|
13 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
14 |
+
from chromadb.config import Settings
|
15 |
+
|
16 |
+
from langchain.vectorstores import Chroma
|
17 |
+
from langchain.llms import Ollama
|
18 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
19 |
+
|
20 |
+
# Custom streamlit handler to display LLM outputs in stream mode
|
21 |
+
class StreamHandler(BaseCallbackHandler):
|
22 |
+
def __init__(self, container, initial_text=""):
|
23 |
+
self.container = container
|
24 |
+
self.text=initial_text
|
25 |
+
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
26 |
+
|
27 |
+
self.text+=token+""
|
28 |
+
self.container.markdown(self.text)
|
29 |
+
|
30 |
+
# streamlit UI configuration
|
31 |
+
def setup_page():
|
32 |
+
st.set_page_config(layout="wide")
|
33 |
+
st.markdown("<h2 style='text-align: center; color: white;'>Your Personal MBA </h2>" , unsafe_allow_html=True)
|
34 |
+
url = 'https://personalmba.com/'
|
35 |
+
col1, col2, col3= st.columns(3)
|
36 |
+
with col2:
|
37 |
+
st.markdown("""
|
38 |
+
<div style="text-align: center;">
|
39 |
+
<h5 style='color: white;'>Inspired by </h5>
|
40 |
+
<a href="%s">The Personal MBA by Josh Kaufman</a>
|
41 |
+
</div>
|
42 |
+
""" % url, unsafe_allow_html=True)
|
43 |
+
st.divider()
|
44 |
+
|
45 |
+
# get necessary environment variables for later use
|
46 |
+
def get_environment_variables():
|
47 |
+
model = os.environ.get("MODEL", "mistral")
|
48 |
+
embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME", "all-MiniLM-L6-v2")
|
49 |
+
persist_directory = os.environ.get("PERSIST_DIRECTORY", "db")
|
50 |
+
target_source_chunks = int(os.environ.get('TARGET_SOURCE_CHUNKS', 4))
|
51 |
+
return model, embeddings_model_name, persist_directory, target_source_chunks
|
52 |
+
|
53 |
+
# create knowledge base retriever
|
54 |
+
def create_knowledge_base(embeddings_model_name, persist_directory, target_source_chunks):
|
55 |
+
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
56 |
+
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
57 |
+
retriever = db.as_retriever(search_kwargs={"k": target_source_chunks})
|
58 |
+
return retriever
|
59 |
+
|
60 |
+
# handle query when user hit 'enter' on a question
|
61 |
+
def handle_query(query, model, retriever):
|
62 |
+
with st.chat_message('assistant'):
|
63 |
+
|
64 |
+
with st.spinner("Generating answer..."):
|
65 |
+
message_placeholder = st.empty()
|
66 |
+
stream_handler = StreamHandler(message_placeholder)
|
67 |
+
llm = Ollama(model=model, callbacks=[stream_handler])
|
68 |
+
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=False)
|
69 |
+
res = qa(query)
|
70 |
+
answer = res['result']
|
71 |
+
message_placeholder.markdown(answer)
|
72 |
+
return answer
|
73 |
+
|
74 |
+
# dictionary to store the previous messages, create a 'memory' for the LLM
|
75 |
+
def initialize_session():
|
76 |
+
if 'messages' not in st.session_state:
|
77 |
+
st.session_state.messages = []
|
78 |
+
|
79 |
+
# display the messages
|
80 |
+
def display_messages():
|
81 |
+
for message in st.session_state.messages:
|
82 |
+
with st.chat_message(message['role']):
|
83 |
+
st.markdown(message['content'])
|
84 |
+
|
85 |
+
# example questions when user first load up the app. Will disappear after user send the first query
|
86 |
+
def show_examples():
|
87 |
+
examples = st.empty()
|
88 |
+
with examples.container():
|
89 |
+
with st.chat_message('assistant'):
|
90 |
+
st.markdown('Example questions:')
|
91 |
+
st.markdown(' - How do I know that I am making the right decisions?')
|
92 |
+
st.markdown(' - What are the key ideas in Chapter 6 "The Human Mind"?')
|
93 |
+
st.markdown(' - What are common traits shared by the most sucessful individuals in the world?')
|
94 |
+
st.markdown(' - I want to be a millionaire, build me a 5 year roadmap based on the top 0.01 percent of the human population.')
|
95 |
+
st.markdown('So, how may I help you today?')
|
96 |
+
return examples
|
97 |
+
|
98 |
+
|
99 |
+
def main():
|
100 |
+
setup_page()
|
101 |
+
initialize_session()
|
102 |
+
display_messages()
|
103 |
+
examples = show_examples()
|
104 |
+
model, embeddings_model_name, persist_directory, target_source_chunks = get_environment_variables()
|
105 |
+
retriever = create_knowledge_base(embeddings_model_name, persist_directory, target_source_chunks)
|
106 |
+
|
107 |
+
query = st.chat_input(placeholder='Ask a question...') # starting with empty query
|
108 |
+
|
109 |
+
if query: # if user input a query and hit 'Enter'
|
110 |
+
examples.empty()
|
111 |
+
|
112 |
+
st.session_state.messages.append({ # add the query into session state/ dictionary
|
113 |
+
'role': 'user',
|
114 |
+
'content': query
|
115 |
+
})
|
116 |
+
|
117 |
+
with st.chat_message('user'):
|
118 |
+
st.markdown(query)
|
119 |
+
|
120 |
+
answer = handle_query(query, model, retriever)
|
121 |
+
|
122 |
+
st.session_state.messages.append({ # add the answer into session state/ dictionary
|
123 |
+
'role': 'assistant',
|
124 |
+
'content': answer
|
125 |
+
})
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
main()
|
constants.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from chromadb.config import Settings
|
3 |
+
|
4 |
+
# Define the folder for storing database
|
5 |
+
PERSIST_DIRECTORY = os.environ.get('PERSIST_DIRECTORY', 'db') # db is default
|
6 |
+
|
7 |
+
# Define the Chroma settings
|
8 |
+
CHROMA_SETTINGS = Settings(
|
9 |
+
persist_directory=PERSIST_DIRECTORY,
|
10 |
+
anonymized_telemetry=False
|
11 |
+
)
|
db/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
db/b7134628-7a61-4630-adf2-934fde432f96/data_level0.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6606e50d663d8e0357beb09c60b4274ed698071f2275efa6f3fc3a64ec4aa739
|
3 |
+
size 1676000
|
db/b7134628-7a61-4630-adf2-934fde432f96/header.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9de63d54afd49cbeeac013426226d9835e7c440647f9303475ea905ead14cd6
|
3 |
+
size 100
|
db/b7134628-7a61-4630-adf2-934fde432f96/index_metadata.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2dcba004a08f5ee7c4c87a677a5f0396391c4804a2e5fadaff4a6e518924247f
|
3 |
+
size 55974
|
db/b7134628-7a61-4630-adf2-934fde432f96/length.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4769fa8c2a4c9da88b7df41a290fea06b511acca2281536194c748a4c89f38d3
|
3 |
+
size 4000
|
db/b7134628-7a61-4630-adf2-934fde432f96/link_lists.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc83519dd4ca9640feb086425393c54166a8b6e3f1f8f29ba36ac8b24fc5b5e7
|
3 |
+
size 8148
|
db/chroma.sqlite3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6b6b5db043f332c024782c3447ad509ab63ee077fae161c9806187bb168191b
|
3 |
+
size 13254656
|
ingest.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
from typing import List
|
4 |
+
from multiprocessing import Pool
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
from langchain.document_loaders import (
|
8 |
+
CSVLoader,
|
9 |
+
EverNoteLoader,
|
10 |
+
PyMuPDFLoader,
|
11 |
+
TextLoader,
|
12 |
+
UnstructuredEmailLoader,
|
13 |
+
UnstructuredEPubLoader,
|
14 |
+
UnstructuredHTMLLoader,
|
15 |
+
UnstructuredMarkdownLoader,
|
16 |
+
UnstructuredODTLoader,
|
17 |
+
UnstructuredPowerPointLoader,
|
18 |
+
UnstructuredWordDocumentLoader,
|
19 |
+
)
|
20 |
+
|
21 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
22 |
+
from langchain.vectorstores import Chroma
|
23 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
24 |
+
from langchain.docstore.document import Document
|
25 |
+
from constants import CHROMA_SETTINGS
|
26 |
+
|
27 |
+
|
28 |
+
# Load environment variables
|
29 |
+
persist_directory = os.environ.get('PERSIST_DIRECTORY', 'db')
|
30 |
+
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
|
31 |
+
embeddings_model_name = os.environ.get('EMBEDDINGS_MODEL_NAME', 'all-MiniLM-L6-v2')
|
32 |
+
chunk_size = 500
|
33 |
+
chunk_overlap = 50
|
34 |
+
|
35 |
+
# Custom document loaders
|
36 |
+
class MyElmLoader(UnstructuredEmailLoader):
|
37 |
+
"""Wrapper to fallback to text/plain when default does not work"""
|
38 |
+
|
39 |
+
def load(self) -> List[Document]:
|
40 |
+
"""Wrapper adding fallback for elm without html"""
|
41 |
+
try:
|
42 |
+
try:
|
43 |
+
doc = UnstructuredEmailLoader.load(self)
|
44 |
+
except ValueError as e:
|
45 |
+
if 'text/html content not found in email' in str(e):
|
46 |
+
# Try plain text
|
47 |
+
self.unstructured_kwargs["content_source"]="text/plain"
|
48 |
+
doc = UnstructuredEmailLoader.load(self)
|
49 |
+
else:
|
50 |
+
raise
|
51 |
+
except Exception as e:
|
52 |
+
# Add file_path to exception message
|
53 |
+
raise type(e)(f"{self.file_path}: {e}") from e
|
54 |
+
|
55 |
+
return doc
|
56 |
+
|
57 |
+
|
58 |
+
# Map file extensions to document loaders and their arguments
|
59 |
+
LOADER_MAPPING = {
|
60 |
+
".csv": (CSVLoader, {}),
|
61 |
+
# ".docx": (Docx2txtLoader, {}),
|
62 |
+
".doc": (UnstructuredWordDocumentLoader, {}),
|
63 |
+
".docx": (UnstructuredWordDocumentLoader, {}),
|
64 |
+
".enex": (EverNoteLoader, {}),
|
65 |
+
".eml": (MyElmLoader, {}),
|
66 |
+
".epub": (UnstructuredEPubLoader, {}),
|
67 |
+
".html": (UnstructuredHTMLLoader, {}),
|
68 |
+
".md": (UnstructuredMarkdownLoader, {}),
|
69 |
+
".odt": (UnstructuredODTLoader, {}),
|
70 |
+
".pdf": (PyMuPDFLoader, {}),
|
71 |
+
".ppt": (UnstructuredPowerPointLoader, {}),
|
72 |
+
".pptx": (UnstructuredPowerPointLoader, {}),
|
73 |
+
".txt": (TextLoader, {"encoding": "utf8"}),
|
74 |
+
# Add more mappings for other file extensions and loaders as needed
|
75 |
+
}
|
76 |
+
|
77 |
+
|
78 |
+
# Loads a single doc from specified file path
|
79 |
+
def load_single_document(file_path: str) -> List[Document]: # Return a list of 'Document' objects
|
80 |
+
ext = "." + file_path.rsplit(".", 1)[-1]
|
81 |
+
if ext in LOADER_MAPPING:
|
82 |
+
loader_class, loader_args = LOADER_MAPPING[ext]
|
83 |
+
loader = loader_class(file_path, **loader_args)
|
84 |
+
return loader.load()
|
85 |
+
|
86 |
+
raise ValueError(f"Unsupported file extension '{ext}'")
|
87 |
+
|
88 |
+
# If there's more than 1 doc, loads all docs from a source dir, optionally ignore specific files
|
89 |
+
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
|
90 |
+
"""
|
91 |
+
Loads all documents from the source documents directory, ignoring specified files
|
92 |
+
"""
|
93 |
+
all_files = []
|
94 |
+
for ext in LOADER_MAPPING:
|
95 |
+
all_files.extend(
|
96 |
+
glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True)
|
97 |
+
)
|
98 |
+
filtered_files = [file_path for file_path in all_files if file_path not in ignored_files]
|
99 |
+
# Parallel processing
|
100 |
+
with Pool(processes=os.cpu_count()) as pool:
|
101 |
+
results = []
|
102 |
+
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
|
103 |
+
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)): # Call loan_single_document for each file path in parallel
|
104 |
+
results.extend(docs)
|
105 |
+
pbar.update()
|
106 |
+
|
107 |
+
return results
|
108 |
+
|
109 |
+
# Loads docs from source_directory using load_document
|
110 |
+
def process_documents(ignored_files: List[str] = []) -> List[Document]:
|
111 |
+
"""
|
112 |
+
Load documents and split in chunks
|
113 |
+
"""
|
114 |
+
print(f"Loading documents from {source_directory}")
|
115 |
+
documents = load_documents(source_directory, ignored_files)
|
116 |
+
if not documents:
|
117 |
+
print("No new documents to load")
|
118 |
+
exit(0)
|
119 |
+
print(f"Loaded {len(documents)} new documents from {source_directory}")
|
120 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) # split the docs into text chunks
|
121 |
+
texts = text_splitter.split_documents(documents)
|
122 |
+
print(f"Split into {len(texts)} chunks of text (max. {chunk_size} tokens each)")
|
123 |
+
return texts # return a list of split text chunks
|
124 |
+
|
125 |
+
def does_vectorstore_exist(persist_directory: str) -> bool:
|
126 |
+
"""
|
127 |
+
Checks if vectorstore exists
|
128 |
+
"""
|
129 |
+
# verifies the presence of necessary files and folders for a valid vectorstore
|
130 |
+
if os.path.exists(os.path.join(persist_directory, 'index')):
|
131 |
+
if os.path.exists(os.path.join(persist_directory, 'chroma-collections.parquet')) and os.path.exists(os.path.join(persist_directory, 'chroma-embeddings.parquet')):
|
132 |
+
list_index_files = glob.glob(os.path.join(persist_directory, 'index/*.bin'))
|
133 |
+
list_index_files += glob.glob(os.path.join(persist_directory, 'index/*.pkl'))
|
134 |
+
# At least 3 documents are needed in a working vectorstore
|
135 |
+
if len(list_index_files) > 3:
|
136 |
+
return True
|
137 |
+
return False
|
138 |
+
|
139 |
+
def main():
|
140 |
+
# Create embeddings
|
141 |
+
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
142 |
+
|
143 |
+
if does_vectorstore_exist(persist_directory):
|
144 |
+
# Update and store locally vectorstore
|
145 |
+
print(f"Appending to existing vectorstore at {persist_directory}")
|
146 |
+
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
147 |
+
collection = db.get()
|
148 |
+
texts = process_documents([metadata['source'] for metadata in collection['metadatas']])
|
149 |
+
print(f"Creating embeddings. May take some minutes...")
|
150 |
+
db.add_documents(texts)
|
151 |
+
else:
|
152 |
+
# Create and store locally vectorstore
|
153 |
+
print("Creating new vectorstore")
|
154 |
+
texts = process_documents()
|
155 |
+
print(f"Creating embeddings. May take some minutes...")
|
156 |
+
db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory)
|
157 |
+
db.persist()
|
158 |
+
db = None
|
159 |
+
|
160 |
+
print(f"Ingestion complete! You can now run privateGPT.py to query your documents")
|
161 |
+
|
162 |
+
|
163 |
+
if __name__ == "__main__":
|
164 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#python3.11.5
|
2 |
+
langchain==0.0.274
|
3 |
+
chromadb==0.4.7
|
4 |
+
urllib3==2.0.4
|
5 |
+
PyMuPDF==1.23.5
|
6 |
+
python-dotenv==1.0.0
|
7 |
+
unstructured==0.10.8
|
8 |
+
extract-msg==0.45.0
|
9 |
+
tabulate==0.9.0
|
10 |
+
pandoc==2.3
|
11 |
+
pypandoc==1.11
|
12 |
+
tqdm==4.66.1
|
13 |
+
sentence_transformers==2.2.2
|
14 |
+
streamlit==1.29.0
|
source_documents/The Personal MBA.pdf
ADDED
Binary file (500 kB). View file
|
|