Spaces:
Runtime error
Runtime error
TianlaiChen
commited on
Commit
·
4ed0ba3
1
Parent(s):
9b1cba9
Update app.py
Browse files
app.py
CHANGED
@@ -1,93 +1,105 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
3 |
-
import torch
|
4 |
-
from torch.distributions.categorical import Categorical
|
5 |
-
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
|
8 |
-
# Load the model and tokenizer
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained("TianlaiChen/PepMLM-650M")
|
10 |
-
model = AutoModelForMaskedLM.from_pretrained("TianlaiChen/PepMLM-650M")
|
11 |
-
|
12 |
-
def compute_pseudo_perplexity(model, tokenizer, protein_seq, binder_seq):
|
13 |
-
sequence = protein_seq + binder_seq
|
14 |
-
tensor_input = tokenizer.encode(sequence, return_tensors='pt').to(model.device)
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
)
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
interface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
3 |
+
import torch
|
4 |
+
from torch.distributions.categorical import Categorical
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
# Load the model and tokenizer
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained("TianlaiChen/PepMLM-650M")
|
10 |
+
model = AutoModelForMaskedLM.from_pretrained("TianlaiChen/PepMLM-650M")
|
11 |
+
|
12 |
+
def compute_pseudo_perplexity(model, tokenizer, protein_seq, binder_seq):
|
13 |
+
sequence = protein_seq + binder_seq
|
14 |
+
tensor_input = tokenizer.encode(sequence, return_tensors='pt').to(model.device)
|
15 |
+
total_loss = 0
|
16 |
+
|
17 |
+
# Loop through each token in the binder sequence
|
18 |
+
for i in range(-len(binder_seq)-1, -1):
|
19 |
+
# Create a copy of the original tensor
|
20 |
+
masked_input = tensor_input.clone()
|
21 |
+
|
22 |
+
# Mask one token at a time
|
23 |
+
masked_input[0, i] = tokenizer.mask_token_id
|
24 |
+
# Create labels
|
25 |
+
labels = torch.full(tensor_input.shape, -100).to(model.device)
|
26 |
+
labels[0, i] = tensor_input[0, i]
|
27 |
+
|
28 |
+
# Get model prediction and loss
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = model(masked_input, labels=labels)
|
31 |
+
total_loss += outputs.loss.item()
|
32 |
+
|
33 |
+
# Calculate the average loss
|
34 |
+
avg_loss = total_loss / len(binder_seq)
|
35 |
+
|
36 |
+
# Calculate pseudo perplexity
|
37 |
+
pseudo_perplexity = np.exp(avg_loss)
|
38 |
+
return pseudo_perplexity
|
39 |
+
|
40 |
+
|
41 |
+
def generate_peptide(protein_seq, peptide_length, top_k, num_binders):
|
42 |
+
|
43 |
+
peptide_length = int(peptide_length)
|
44 |
+
top_k = int(top_k)
|
45 |
+
num_binders = int(num_binders)
|
46 |
+
|
47 |
+
binders_with_ppl = []
|
48 |
+
|
49 |
+
for _ in range(num_binders):
|
50 |
+
# Generate binder
|
51 |
+
masked_peptide = '<mask>' * peptide_length
|
52 |
+
input_sequence = protein_seq + masked_peptide
|
53 |
+
inputs = tokenizer(input_sequence, return_tensors="pt").to(model.device)
|
54 |
+
|
55 |
+
with torch.no_grad():
|
56 |
+
logits = model(**inputs).logits
|
57 |
+
mask_token_indices = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
|
58 |
+
logits_at_masks = logits[0, mask_token_indices]
|
59 |
+
|
60 |
+
# Apply top-k sampling
|
61 |
+
top_k_logits, top_k_indices = logits_at_masks.topk(top_k, dim=-1)
|
62 |
+
probabilities = torch.nn.functional.softmax(top_k_logits, dim=-1)
|
63 |
+
predicted_indices = Categorical(probabilities).sample()
|
64 |
+
predicted_token_ids = top_k_indices.gather(-1, predicted_indices.unsqueeze(-1)).squeeze(-1)
|
65 |
+
|
66 |
+
generated_binder = tokenizer.decode(predicted_token_ids, skip_special_tokens=True).replace(' ', '')
|
67 |
+
|
68 |
+
# Compute PPL for the generated binder
|
69 |
+
ppl_value = compute_pseudo_perplexity(model, tokenizer, protein_seq, generated_binder)
|
70 |
+
|
71 |
+
# Add the generated binder and its PPL to the results list
|
72 |
+
binders_with_ppl.append([generated_binder, ppl_value])
|
73 |
+
|
74 |
+
# Convert the list of lists to a pandas dataframe
|
75 |
+
df = pd.DataFrame(binders_with_ppl, columns=["Binder", "Perplexity"])
|
76 |
+
|
77 |
+
# Save the dataframe to a CSV file
|
78 |
+
output_filename = "output.csv"
|
79 |
+
df.to_csv(output_filename, index=False)
|
80 |
+
|
81 |
+
|
82 |
+
return binders_with_ppl, output_filename
|
83 |
+
|
84 |
+
|
85 |
+
# Define the Gradio interface
|
86 |
+
interface = gr.Interface(
|
87 |
+
fn=generate_peptide,
|
88 |
+
inputs=[
|
89 |
+
gr.Textbox(label="Protein Sequence", info="Enter protein sequence here", type="text"),
|
90 |
+
gr.Slider(3, 50, value=15, label="Peptide Length", step=1, info='Default value is 15'),
|
91 |
+
gr.Slider(1, 10, value=3, label="Top K Value", step=1, info='Default value is 3'),
|
92 |
+
gr.Dropdown(choices=[1, 2, 4, 8, 16, 32], label="Number of Binders", value=1)
|
93 |
+
],
|
94 |
+
outputs=[
|
95 |
+
gr.Dataframe(
|
96 |
+
headers=["Binder", "Perplexity"],
|
97 |
+
datatype=["str", "number"],
|
98 |
+
col_count=(2, "fixed")
|
99 |
+
),
|
100 |
+
gr.outputs.File(label="Download CSV")
|
101 |
+
],
|
102 |
+
title="PepMLM: Target Sequence-Conditioned Generation of Peptide Binders via Masked Language Modeling"
|
103 |
+
)
|
104 |
+
|
105 |
interface.launch()
|