PepMLM / app.py
TianlaiChen's picture
gen
302efca
raw
history blame
3.26 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForMaskedLM
import torch
from torch.distributions.categorical import Categorical
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("TianlaiChen/PepMLM-650M")
model = AutoModelForMaskedLM.from_pretrained("TianlaiChen/PepMLM-650M")
def compute_pseudo_perplexity(model, tokenizer, protein_seq, binder_seq):
sequence = protein_seq + binder_seq
tensor_input = tokenizer.encode(sequence, return_tensors='pt').to(model.device)
# Create a mask for the binder sequence
binder_mask = torch.zeros(tensor_input.shape).to(model.device)
binder_mask[0, -len(binder_seq)-1:-1] = 1
# Mask the binder sequence in the input and create labels
masked_input = tensor_input.clone().masked_fill_(binder_mask.bool(), tokenizer.mask_token_id)
labels = tensor_input.clone().masked_fill_(~binder_mask.bool(), -100)
with torch.no_grad():
loss = model(masked_input, labels=labels).loss
return np.exp(loss.item())
def generate_peptide(protein_seq, peptide_length, top_k, num_binders):
peptide_length = int(peptide_length)
top_k = int(top_k)
num_binders = int(num_binders)
binders_with_ppl = []
for _ in range(num_binders):
# Generate binder
masked_peptide = '<mask>' * peptide_length
input_sequence = protein_seq + masked_peptide
inputs = tokenizer(input_sequence, return_tensors="pt").to(model.device)
with torch.no_grad():
logits = model(**inputs).logits
mask_token_indices = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
logits_at_masks = logits[0, mask_token_indices]
# Apply top-k sampling
top_k_logits, top_k_indices = logits_at_masks.topk(top_k, dim=-1)
probabilities = torch.nn.functional.softmax(top_k_logits, dim=-1)
predicted_indices = Categorical(probabilities).sample()
predicted_token_ids = top_k_indices.gather(-1, predicted_indices.unsqueeze(-1)).squeeze(-1)
generated_binder = tokenizer.decode(predicted_token_ids, skip_special_tokens=True).replace(' ', '')
# Compute PPL for the generated binder
ppl_value = compute_pseudo_perplexity(model, tokenizer, protein_seq, generated_binder)
binders_with_ppl.append((generated_binder, ppl_value))
# Formatting the output
output = "\n".join([f"Binder: {binder}, PPL: {ppl:.2f}" for binder, ppl in binders_with_ppl])
return output
# Define the Gradio interface
interface = gr.Interface(
fn=generate_peptide,
inputs=[
gr.Textbox(label="Protein Sequence", info="Enter protein sequence here", type="text"),
gr.Slider(3, 50, value=15, label="Peptide Length", step=1, info='Default value is 15'),
gr.Slider(1, 10, value=3, label="Top K Value", step=1, info='Default value is 3'),
gr.Dropdown(choices=[1, 2, 4, 8, 16, 32], label="Number of Binders", value=4)
],
outputs=gr.outputs.Textbox(label="Binders (with Perplexity)"),
title="PepMLM: Target Sequence-Conditioned Generation of Peptide Binders via Masked Language Modeling"
)
interface.launch()