Yiwen-ntu commited on
Commit
55d2f59
·
verified ·
1 Parent(s): 14af97a

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +275 -277
  2. main.py +17 -22
  3. mesh_to_pc.py +2 -2
app.py CHANGED
@@ -1,278 +1,276 @@
1
- import spaces
2
- import subprocess
3
- # Install flash attention, skipping CUDA build if necessary
4
- subprocess.run(
5
- "pip install flash-attn --no-build-isolation",
6
- env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
7
- shell=True,
8
- )
9
- import os
10
- import torch
11
- import trimesh
12
- from accelerate.utils import set_seed
13
- from accelerate import Accelerator
14
- import numpy as np
15
- import gradio as gr
16
- from main import get_args, load_model
17
- from mesh_to_pc import process_mesh_to_pc
18
- import time
19
- import matplotlib.pyplot as plt
20
- from mpl_toolkits.mplot3d.art3d import Poly3DCollection
21
- from PIL import Image
22
- import io
23
-
24
- args = get_args()
25
- model = load_model(args)
26
-
27
- device = torch.device('cuda')
28
- accelerator = Accelerator(
29
- mixed_precision="fp16",
30
- )
31
- model = accelerator.prepare(model)
32
- model.eval()
33
- print("Model loaded to device")
34
-
35
- def wireframe_render(mesh):
36
- views = [
37
- (90, 20), (270, 20)
38
- ]
39
- mesh.vertices = mesh.vertices[:, [0, 2, 1]]
40
-
41
- bounding_box = mesh.bounds
42
- center = mesh.centroid
43
- scale = np.ptp(bounding_box, axis=0).max()
44
-
45
- fig = plt.figure(figsize=(10, 10))
46
-
47
- # Function to render and return each view as an image
48
- def render_view(mesh, azimuth, elevation):
49
- ax = fig.add_subplot(111, projection='3d')
50
- ax.set_axis_off()
51
-
52
- # Extract vertices and faces for plotting
53
- vertices = mesh.vertices
54
- faces = mesh.faces
55
-
56
- # Plot faces
57
- ax.add_collection3d(Poly3DCollection(
58
- vertices[faces],
59
- facecolors=(0.8, 0.5, 0.2, 1.0), # Brownish yellow
60
- edgecolors='k',
61
- linewidths=0.5,
62
- ))
63
-
64
- # Set limits and center the view on the object
65
- ax.set_xlim(center[0] - scale / 2, center[0] + scale / 2)
66
- ax.set_ylim(center[1] - scale / 2, center[1] + scale / 2)
67
- ax.set_zlim(center[2] - scale / 2, center[2] + scale / 2)
68
-
69
- # Set view angle
70
- ax.view_init(elev=elevation, azim=azimuth)
71
-
72
- # Save the figure to a buffer
73
- buf = io.BytesIO()
74
- plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=300)
75
- plt.clf()
76
- buf.seek(0)
77
-
78
- return Image.open(buf)
79
-
80
- # Render each view and store in a list
81
- images = [render_view(mesh, az, el) for az, el in views]
82
-
83
- # Combine images horizontally
84
- widths, heights = zip(*(i.size for i in images))
85
- total_width = sum(widths)
86
- max_height = max(heights)
87
-
88
- combined_image = Image.new('RGBA', (total_width, max_height))
89
-
90
- x_offset = 0
91
- for img in images:
92
- combined_image.paste(img, (x_offset, 0))
93
- x_offset += img.width
94
-
95
- # Save the combined image
96
- save_path = f"combined_mesh_view_{int(time.time())}.png"
97
- combined_image.save(save_path)
98
-
99
- plt.close(fig)
100
- return save_path
101
-
102
- @spaces.GPU(duration=300)
103
- def do_inference(input_3d, sample_seed=0, do_sampling=False, do_marching_cubes=False):
104
- set_seed(sample_seed)
105
- print("Seed value:", sample_seed)
106
-
107
- input_mesh = trimesh.load(input_3d)
108
- pc_list, mesh_list = process_mesh_to_pc([input_mesh], marching_cubes = do_marching_cubes)
109
- pc_normal = pc_list[0] # 4096, 6
110
- mesh = mesh_list[0]
111
- vertices = mesh.vertices
112
-
113
- pc_coor = pc_normal[:, :3]
114
- normals = pc_normal[:, 3:]
115
-
116
- bounds = np.array([vertices.min(axis=0), vertices.max(axis=0)])
117
- # scale mesh and pc
118
- vertices = vertices - (bounds[0] + bounds[1])[None, :] / 2
119
- vertices = vertices / (bounds[1] - bounds[0]).max()
120
- mesh.vertices = vertices
121
- pc_coor = pc_coor - (bounds[0] + bounds[1])[None, :] / 2
122
- pc_coor = pc_coor / (bounds[1] - bounds[0]).max()
123
-
124
- mesh.merge_vertices()
125
- mesh.update_faces(mesh.unique_faces())
126
- mesh.fix_normals()
127
- if mesh.visual.vertex_colors is not None:
128
- orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
129
-
130
- mesh.visual.vertex_colors = np.tile(orange_color, (mesh.vertices.shape[0], 1))
131
- else:
132
- orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
133
- mesh.visual.vertex_colors = np.tile(orange_color, (mesh.vertices.shape[0], 1))
134
- input_save_name = f"processed_input_{int(time.time())}.obj"
135
- mesh.export(input_save_name)
136
- input_render_res = wireframe_render(mesh)
137
-
138
- pc_coor = pc_coor / np.abs(pc_coor).max() * 0.9995 # input should be from -1 to 1
139
- assert (np.linalg.norm(normals, axis=-1) > 0.99).all(), "normals should be unit vectors, something wrong"
140
- normalized_pc_normal = np.concatenate([pc_coor, normals], axis=-1, dtype=np.float16)
141
-
142
- input = torch.tensor(normalized_pc_normal, dtype=torch.float16, device=device)[None]
143
- print("Data loaded")
144
-
145
- # with accelerator.autocast():
146
- with accelerator.autocast():
147
- outputs = model(input, do_sampling)
148
- print("Model inference done")
149
- recon_mesh = outputs[0]
150
-
151
- recon_mesh = recon_mesh[~torch.isnan(recon_mesh[:, 0, 0])] # nvalid_face x 3 x 3
152
- vertices = recon_mesh.reshape(-1, 3).cpu()
153
- vertices_index = np.arange(len(vertices)) # 0, 1, ..., 3 x face
154
- triangles = vertices_index.reshape(-1, 3)
155
-
156
- artist_mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, force="mesh",
157
- merge_primitives=True)
158
- artist_mesh.merge_vertices()
159
- artist_mesh.update_faces(artist_mesh.unique_faces())
160
- artist_mesh.fix_normals()
161
-
162
- if artist_mesh.visual.vertex_colors is not None:
163
- orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
164
-
165
- artist_mesh.visual.vertex_colors = np.tile(orange_color, (artist_mesh.vertices.shape[0], 1))
166
- else:
167
- orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
168
- artist_mesh.visual.vertex_colors = np.tile(orange_color, (artist_mesh.vertices.shape[0], 1))
169
-
170
- num_faces = len(artist_mesh.faces)
171
-
172
- brown_color = np.array([165, 42, 42, 255], dtype=np.uint8)
173
- face_colors = np.tile(brown_color, (num_faces, 1))
174
-
175
- artist_mesh.visual.face_colors = face_colors
176
- # add time stamp to avoid cache
177
- save_name = f"output_{int(time.time())}.obj"
178
- artist_mesh.export(save_name)
179
- output_render = wireframe_render(artist_mesh)
180
- return input_save_name, input_render_res, save_name, output_render
181
-
182
-
183
- _HEADER_ = '''
184
- <h2><b>Official 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/buaacyw/MeshAnything' target='_blank'><b>MeshAnything: Artist-Created Mesh Generation with Autoregressive Transformers</b></a></h2>
185
-
186
- **MeshAnything** converts any 3D representation into meshes created by human artists, i.e., Artist-Created Meshes (AMs).
187
-
188
- Code: <a href='https://github.com/buaacyw/MeshAnything' target='_blank'>GitHub</a>. Arxiv Paper: <a href='https://arxiv.org/abs/2406.10163' target='_blank'>ArXiv</a>.
189
-
190
- ❗️❗️❗️**Important Notes:**
191
- - Gradio doesn't support interactive wireframe rendering currently. For interactive mesh visualization, please use download the obj file and open it with MeshLab or https://3dviewer.net/.
192
- - The input mesh will be normalized to a unit bounding box. The up vector of the input mesh should be +Y for better results. Click **Preprocess with Marching Cubes** if the input mesh is a manually created mesh.
193
- - Limited by computational resources, MeshAnything is trained on meshes with fewer than 800 faces and cannot generate meshes with more than 800 faces. The shape of the input mesh should be sharp enough; otherwise, it will be challenging to represent it with only 800 faces. Thus, feed-forward image-to-3D methods may often produce bad results due to insufficient shape quality.
194
- - For point cloud input, please refer to our github repo <a href='https://github.com/buaacyw/MeshAnything' target='_blank'>GitHub</a>.
195
- '''
196
-
197
-
198
- _CITE_ = r"""
199
- If MeshAnything is helpful, please help to ⭐ the <a href='https://github.com/buaacyw/MeshAnything' target='_blank'>Github Repo</a>. Thanks!
200
- ---
201
- 📋 **License**
202
-
203
- S-Lab-1.0 LICENSE. Please refer to the [LICENSE file](https://github.com/buaacyw/GaussianEditor/blob/master/LICENSE.txt) for details.
204
-
205
- 📧 **Contact**
206
-
207
- If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
208
-
209
- """
210
- output_model_obj = gr.Model3D(
211
- label="Generated Mesh (OBJ Format)",
212
- clear_color=[1, 1, 1, 1],
213
- )
214
- preprocess_model_obj = gr.Model3D(
215
- label="Processed Input Mesh (OBJ Format)",
216
- clear_color=[1, 1, 1, 1],
217
- )
218
- input_image_render = gr.Image(
219
- label="Wireframe Render of Processed Input Mesh",
220
- )
221
- output_image_render = gr.Image(
222
- label="Wireframe Render of Generated Mesh",
223
- )
224
- with (gr.Blocks() as demo):
225
- gr.Markdown(_HEADER_)
226
- with gr.Row(variant="panel"):
227
- with gr.Column():
228
- with gr.Row():
229
- input_3d = gr.Model3D(
230
- label="Input Mesh",
231
- clear_color=[1,1,1,1],
232
- )
233
-
234
- with gr.Row():
235
- with gr.Group():
236
- do_marching_cubes = gr.Checkbox(label="Preprocess with Marching Cubes", value=False)
237
- do_sampling = gr.Checkbox(label="Random Sampling", value=False)
238
- sample_seed = gr.Number(value=0, label="Seed Value", precision=0)
239
-
240
- with gr.Row():
241
- submit = gr.Button("Generate", elem_id="generate", variant="primary")
242
-
243
- with gr.Row(variant="panel"):
244
- mesh_examples = gr.Examples(
245
- examples=[
246
- os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
247
- ],
248
- inputs=input_3d,
249
- outputs=[preprocess_model_obj, input_image_render, output_model_obj, output_image_render],
250
- fn=do_inference,
251
- cache_examples = "lazy",
252
- examples_per_page=10
253
- )
254
- with gr.Column():
255
- with gr.Row():
256
- input_image_render.render()
257
- with gr.Row():
258
- with gr.Tab("OBJ"):
259
- preprocess_model_obj.render()
260
- with gr.Row():
261
- output_image_render.render()
262
- with gr.Row():
263
- with gr.Tab("OBJ"):
264
- output_model_obj.render()
265
- with gr.Row():
266
- gr.Markdown('''Try click random sampling and different <b>Seed Value</b> if the result is unsatisfying''')
267
-
268
- gr.Markdown(_CITE_)
269
-
270
- mv_images = gr.State()
271
-
272
- submit.click(
273
- fn=do_inference,
274
- inputs=[input_3d, sample_seed, do_sampling, do_marching_cubes],
275
- outputs=[preprocess_model_obj, input_image_render, output_model_obj, output_image_render],
276
- )
277
-
278
  demo.launch(share=True)
 
1
+ import os
2
+ import torch
3
+ import trimesh
4
+ from accelerate.utils import set_seed
5
+ from accelerate import Accelerator
6
+ import numpy as np
7
+ import gradio as gr
8
+ from main import load_v2
9
+ from mesh_to_pc import process_mesh_to_pc
10
+ import time
11
+ import matplotlib.pyplot as plt
12
+ from mpl_toolkits.mplot3d.art3d import Poly3DCollection
13
+ from PIL import Image
14
+ import io
15
+
16
+ model = load_v2()
17
+
18
+ device = torch.device('cuda')
19
+ accelerator = Accelerator(
20
+ mixed_precision="fp16",
21
+ )
22
+ model = accelerator.prepare(model)
23
+ model.eval()
24
+ print("Model loaded to device")
25
+
26
+ def wireframe_render(mesh):
27
+ views = [
28
+ (90, 20), (270, 20)
29
+ ]
30
+ mesh.vertices = mesh.vertices[:, [0, 2, 1]]
31
+
32
+ bounding_box = mesh.bounds
33
+ center = mesh.centroid
34
+ scale = np.ptp(bounding_box, axis=0).max()
35
+
36
+ fig = plt.figure(figsize=(10, 10))
37
+
38
+ # Function to render and return each view as an image
39
+ def render_view(mesh, azimuth, elevation):
40
+ ax = fig.add_subplot(111, projection='3d')
41
+ ax.set_axis_off()
42
+
43
+ # Extract vertices and faces for plotting
44
+ vertices = mesh.vertices
45
+ faces = mesh.faces
46
+
47
+ # Plot faces
48
+ ax.add_collection3d(Poly3DCollection(
49
+ vertices[faces],
50
+ facecolors=(0.8, 0.5, 0.2, 1.0), # Brownish yellow
51
+ edgecolors='k',
52
+ linewidths=0.5,
53
+ ))
54
+
55
+ # Set limits and center the view on the object
56
+ ax.set_xlim(center[0] - scale / 2, center[0] + scale / 2)
57
+ ax.set_ylim(center[1] - scale / 2, center[1] + scale / 2)
58
+ ax.set_zlim(center[2] - scale / 2, center[2] + scale / 2)
59
+
60
+ # Set view angle
61
+ ax.view_init(elev=elevation, azim=azimuth)
62
+
63
+ # Save the figure to a buffer
64
+ buf = io.BytesIO()
65
+ plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, dpi=300)
66
+ plt.clf()
67
+ buf.seek(0)
68
+
69
+ return Image.open(buf)
70
+
71
+ # Render each view and store in a list
72
+ images = [render_view(mesh, az, el) for az, el in views]
73
+
74
+ # Combine images horizontally
75
+ widths, heights = zip(*(i.size for i in images))
76
+ total_width = sum(widths)
77
+ max_height = max(heights)
78
+
79
+ combined_image = Image.new('RGBA', (total_width, max_height))
80
+
81
+ x_offset = 0
82
+ for img in images:
83
+ combined_image.paste(img, (x_offset, 0))
84
+ x_offset += img.width
85
+
86
+ # Save the combined image
87
+ save_path = f"combined_mesh_view_{int(time.time())}.png"
88
+ combined_image.save(save_path)
89
+
90
+ plt.close(fig)
91
+ return save_path
92
+
93
+ @torch.no_grad()
94
+ def do_inference(input_3d, sample_seed=0, do_sampling=False, do_marching_cubes=False):
95
+ set_seed(sample_seed)
96
+ print("Seed value:", sample_seed)
97
+
98
+ input_mesh = trimesh.load(input_3d)
99
+ pc_list, mesh_list = process_mesh_to_pc([input_mesh], marching_cubes = do_marching_cubes)
100
+ pc_normal = pc_list[0] # 4096, 6
101
+ mesh = mesh_list[0]
102
+ vertices = mesh.vertices
103
+
104
+ pc_coor = pc_normal[:, :3]
105
+ normals = pc_normal[:, 3:]
106
+
107
+ bounds = np.array([vertices.min(axis=0), vertices.max(axis=0)])
108
+ # scale mesh and pc
109
+ vertices = vertices - (bounds[0] + bounds[1])[None, :] / 2
110
+ vertices = vertices / (bounds[1] - bounds[0]).max()
111
+ mesh.vertices = vertices
112
+ pc_coor = pc_coor - (bounds[0] + bounds[1])[None, :] / 2
113
+ pc_coor = pc_coor / (bounds[1] - bounds[0]).max()
114
+
115
+ mesh.merge_vertices()
116
+ mesh.update_faces(mesh.nondegenerate_faces())
117
+ mesh.update_faces(mesh.unique_faces())
118
+ mesh.remove_unreferenced_vertices()
119
+ mesh.fix_normals()
120
+ if mesh.visual.vertex_colors is not None:
121
+ orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
122
+
123
+ mesh.visual.vertex_colors = np.tile(orange_color, (mesh.vertices.shape[0], 1))
124
+ else:
125
+ orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
126
+ mesh.visual.vertex_colors = np.tile(orange_color, (mesh.vertices.shape[0], 1))
127
+ input_save_name = f"processed_input_{int(time.time())}.obj"
128
+ mesh.export(input_save_name)
129
+ input_render_res = wireframe_render(mesh)
130
+
131
+ pc_coor = pc_coor / np.abs(pc_coor).max() * 0.99 # input should be from -1 to 1
132
+
133
+ assert (np.linalg.norm(normals, axis=-1) > 0.99).all(), "normals should be unit vectors, something wrong"
134
+ normalized_pc_normal = np.concatenate([pc_coor, normals], axis=-1, dtype=np.float16)
135
+
136
+ input = torch.tensor(normalized_pc_normal, dtype=torch.float16, device=device)[None]
137
+ print("Data loaded")
138
+
139
+ # with accelerator.autocast():
140
+ with accelerator.autocast():
141
+ outputs = model(input, do_sampling)
142
+ print("Model inference done")
143
+ recon_mesh = outputs[0]
144
+
145
+ valid_mask = torch.all(~torch.isnan(recon_mesh.reshape((-1, 9))), dim=1)
146
+ recon_mesh = recon_mesh[valid_mask] # nvalid_face x 3 x 3
147
+ vertices = recon_mesh.reshape(-1, 3).cpu()
148
+ vertices_index = np.arange(len(vertices)) # 0, 1, ..., 3 x face
149
+ triangles = vertices_index.reshape(-1, 3)
150
+
151
+ artist_mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, force="mesh",
152
+ merge_primitives=True)
153
+
154
+ artist_mesh.merge_vertices()
155
+ artist_mesh.update_faces(artist_mesh.nondegenerate_faces())
156
+ artist_mesh.update_faces(artist_mesh.unique_faces())
157
+ artist_mesh.remove_unreferenced_vertices()
158
+ artist_mesh.fix_normals()
159
+
160
+ if artist_mesh.visual.vertex_colors is not None:
161
+ orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
162
+
163
+ artist_mesh.visual.vertex_colors = np.tile(orange_color, (artist_mesh.vertices.shape[0], 1))
164
+ else:
165
+ orange_color = np.array([255, 165, 0, 255], dtype=np.uint8)
166
+ artist_mesh.visual.vertex_colors = np.tile(orange_color, (artist_mesh.vertices.shape[0], 1))
167
+
168
+ num_faces = len(artist_mesh.faces)
169
+
170
+ brown_color = np.array([165, 42, 42, 255], dtype=np.uint8)
171
+ face_colors = np.tile(brown_color, (num_faces, 1))
172
+
173
+ artist_mesh.visual.face_colors = face_colors
174
+ # add time stamp to avoid cache
175
+ save_name = f"output_{int(time.time())}.obj"
176
+ artist_mesh.export(save_name)
177
+ output_render = wireframe_render(artist_mesh)
178
+ return input_save_name, input_render_res, save_name, output_render
179
+
180
+
181
+ _HEADER_ = '''
182
+ <h2><b>Official ? Gradio Demo</b></h2><h2><a href='https://github.com/buaacyw/MeshAnything' target='_blank'><b>MeshAnything V2: Artist-Created Mesh Generation With Adjacent Mesh Tokenization</b></a></h2>
183
+
184
+ **MeshAnything** converts any 3D representation into meshes created by human artists, i.e., Artist-Created Meshes (AMs).
185
+
186
+ Code: <a href='https://github.com/buaacyw/MeshAnything' target='_blank'>GitHub</a>. Arxiv Paper: <a href='https://arxiv.org/abs/2406.10163' target='_blank'>ArXiv</a>.
187
+
188
+ ??????**Important Notes:**
189
+ - Gradio doesn't support interactive wireframe rendering currently. For interactive mesh visualization, please use download the obj file and open it with MeshLab or https://3dviewer.net/.
190
+ - The input mesh will be normalized to a unit bounding box. The up vector of the input mesh should be +Y for better results. Click **Preprocess with Marching Cubes** if the input mesh is a manually created mesh.
191
+ - Limited by computational resources, MeshAnything is trained on meshes with fewer than 800 faces and cannot generate meshes with more than 800 faces. The shape of the input mesh should be sharp enough; otherwise, it will be challenging to represent it with only 800 faces. Thus, feed-forward image-to-3D methods may often produce bad results due to insufficient shape quality.
192
+ - For point cloud input, please refer to our github repo <a href='https://github.com/buaacyw/MeshAnything' target='_blank'>GitHub</a>.
193
+ '''
194
+
195
+
196
+ _CITE_ = r"""
197
+ If MeshAnything is helpful, please help to ? the <a href='https://github.com/buaacyw/MeshAnything' target='_blank'>Github Repo</a>. Thanks!
198
+ ---
199
+ ? **License**
200
+
201
+ S-Lab-1.0 LICENSE. Please refer to the [LICENSE file](https://github.com/buaacyw/GaussianEditor/blob/master/LICENSE.txt) for details.
202
+
203
+ ? **Contact**
204
+
205
+ If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
206
+
207
+ """
208
+ output_model_obj = gr.Model3D(
209
+ label="Generated Mesh (OBJ Format)",
210
+ clear_color=[1, 1, 1, 1],
211
+ )
212
+ preprocess_model_obj = gr.Model3D(
213
+ label="Processed Input Mesh (OBJ Format)",
214
+ clear_color=[1, 1, 1, 1],
215
+ )
216
+ input_image_render = gr.Image(
217
+ label="Wireframe Render of Processed Input Mesh",
218
+ )
219
+ output_image_render = gr.Image(
220
+ label="Wireframe Render of Generated Mesh",
221
+ )
222
+ with (gr.Blocks() as demo):
223
+ gr.Markdown(_HEADER_)
224
+ with gr.Row(variant="panel"):
225
+ with gr.Column():
226
+ with gr.Row():
227
+ input_3d = gr.Model3D(
228
+ label="Input Mesh",
229
+ clear_color=[1,1,1,1],
230
+ )
231
+
232
+ with gr.Row():
233
+ with gr.Group():
234
+ do_marching_cubes = gr.Checkbox(label="Preprocess with Marching Cubes", value=False)
235
+ do_sampling = gr.Checkbox(label="Random Sampling", value=False)
236
+ sample_seed = gr.Number(value=0, label="Seed Value", precision=0)
237
+
238
+ with gr.Row():
239
+ submit = gr.Button("Generate", elem_id="generate", variant="primary")
240
+
241
+ with gr.Row(variant="panel"):
242
+ mesh_examples = gr.Examples(
243
+ examples=[
244
+ os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
245
+ ],
246
+ inputs=input_3d,
247
+ outputs=[preprocess_model_obj, input_image_render, output_model_obj, output_image_render],
248
+ fn=do_inference,
249
+ cache_examples = False,
250
+ examples_per_page=10
251
+ )
252
+ with gr.Column():
253
+ with gr.Row():
254
+ input_image_render.render()
255
+ with gr.Row():
256
+ with gr.Tab("OBJ"):
257
+ preprocess_model_obj.render()
258
+ with gr.Row():
259
+ output_image_render.render()
260
+ with gr.Row():
261
+ with gr.Tab("OBJ"):
262
+ output_model_obj.render()
263
+ with gr.Row():
264
+ gr.Markdown('''Try click random sampling and different <b>Seed Value</b> if the result is unsatisfying''')
265
+
266
+ gr.Markdown(_CITE_)
267
+
268
+ mv_images = gr.State()
269
+
270
+ submit.click(
271
+ fn=do_inference,
272
+ inputs=[input_3d, sample_seed, do_sampling, do_marching_cubes],
273
+ outputs=[preprocess_model_obj, input_image_render, output_model_obj, output_image_render],
274
+ )
275
+
 
 
276
  demo.launch(share=True)
main.py CHANGED
@@ -3,12 +3,13 @@ import torch
3
  import time
4
  import trimesh
5
  import numpy as np
6
- from MeshAnything.models.meshanything import MeshAnything
7
  import datetime
8
  from accelerate import Accelerator
9
  from accelerate.utils import set_seed
10
  from accelerate.utils import DistributedDataParallelKwargs
11
- from safetensors import safe_open
 
12
  from mesh_to_pc import process_mesh_to_pc
13
  from huggingface_hub import hf_hub_download
14
 
@@ -21,8 +22,8 @@ class Dataset:
21
  # load npy
22
  cur_data = np.load(input_path)
23
  # sample 4096
24
- assert cur_data.shape[0] >= 4096, "input pc_normal should have at least 4096 points"
25
- idx = np.random.choice(cur_data.shape[0], 4096, replace=False)
26
  cur_data = cur_data[idx]
27
  self.data.append({'pc_normal': cur_data, 'uid': input_path.split('/')[-1].split('.')[0]})
28
 
@@ -60,12 +61,10 @@ class Dataset:
60
  def get_args():
61
  parser = argparse.ArgumentParser("MeshAnything", add_help=False)
62
 
63
- parser.add_argument('--llm', default="facebook/opt-350m", type=str)
64
  parser.add_argument('--input_dir', default=None, type=str)
65
  parser.add_argument('--input_path', default=None, type=str)
66
 
67
  parser.add_argument('--out_dir', default="inference_out", type=str)
68
- parser.add_argument('--pretrained_weights', default="MeshAnything_350m.pth", type=str)
69
 
70
  parser.add_argument(
71
  '--input_type',
@@ -74,11 +73,6 @@ def get_args():
74
  help="Type of the asset to process (default: pc)"
75
  )
76
 
77
- parser.add_argument("--codebook_size", default=8192, type=int)
78
- parser.add_argument("--codebook_dim", default=1024, type=int)
79
-
80
- parser.add_argument("--n_max_triangles", default=800, type=int)
81
-
82
  parser.add_argument("--batchsize_per_gpu", default=1, type=int)
83
  parser.add_argument("--seed", default=0, type=int)
84
 
@@ -88,20 +82,17 @@ def get_args():
88
  args = parser.parse_args()
89
  return args
90
 
91
- def load_model(args):
92
- model = MeshAnything(args)
93
  print("load model over!!!")
94
 
95
  ckpt_path = hf_hub_download(
96
- repo_id="Yiwen-ntu/MeshAnything",
97
- filename="MeshAnything_350m.pth",
98
  )
99
- tensors = {}
100
- with safe_open(ckpt_path, framework="pt", device=0) as f:
101
- for k in f.keys():
102
- tensors[k] = f.get_tensor(k)
103
 
104
- model.load_state_dict(tensors, strict=True)
 
105
  print("load weights over!!!")
106
  return model
107
  if __name__ == "__main__":
@@ -117,7 +108,7 @@ if __name__ == "__main__":
117
  kwargs_handlers=[kwargs]
118
  )
119
 
120
- model = load_model(args)
121
  # create dataset
122
  if args.input_dir is not None:
123
  input_list = sorted(os.listdir(args.input_dir))
@@ -155,7 +146,9 @@ if __name__ == "__main__":
155
 
156
  for batch_id in range(batch_size):
157
  recon_mesh = outputs[batch_id]
158
- recon_mesh = recon_mesh[~torch.isnan(recon_mesh[:, 0, 0])] # nvalid_face x 3 x 3
 
 
159
  vertices = recon_mesh.reshape(-1, 3).cpu()
160
  vertices_index = np.arange(len(vertices)) # 0, 1, ..., 3 x face
161
  triangles = vertices_index.reshape(-1, 3)
@@ -163,7 +156,9 @@ if __name__ == "__main__":
163
  scene_mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, force="mesh",
164
  merge_primitives=True)
165
  scene_mesh.merge_vertices()
 
166
  scene_mesh.update_faces(scene_mesh.unique_faces())
 
167
  scene_mesh.fix_normals()
168
  save_path = os.path.join(checkpoint_dir, f'{batch_data_label["uid"][batch_id]}_gen.obj')
169
  num_faces = len(scene_mesh.faces)
 
3
  import time
4
  import trimesh
5
  import numpy as np
6
+ from MeshAnything.models.meshanything_v2 import MeshAnythingV2
7
  import datetime
8
  from accelerate import Accelerator
9
  from accelerate.utils import set_seed
10
  from accelerate.utils import DistributedDataParallelKwargs
11
+ from safetensors.torch import load_model
12
+
13
  from mesh_to_pc import process_mesh_to_pc
14
  from huggingface_hub import hf_hub_download
15
 
 
22
  # load npy
23
  cur_data = np.load(input_path)
24
  # sample 4096
25
+ assert cur_data.shape[0] >= 8192, "input pc_normal should have at least 4096 points"
26
+ idx = np.random.choice(cur_data.shape[0], 8192, replace=False)
27
  cur_data = cur_data[idx]
28
  self.data.append({'pc_normal': cur_data, 'uid': input_path.split('/')[-1].split('.')[0]})
29
 
 
61
  def get_args():
62
  parser = argparse.ArgumentParser("MeshAnything", add_help=False)
63
 
 
64
  parser.add_argument('--input_dir', default=None, type=str)
65
  parser.add_argument('--input_path', default=None, type=str)
66
 
67
  parser.add_argument('--out_dir', default="inference_out", type=str)
 
68
 
69
  parser.add_argument(
70
  '--input_type',
 
73
  help="Type of the asset to process (default: pc)"
74
  )
75
 
 
 
 
 
 
76
  parser.add_argument("--batchsize_per_gpu", default=1, type=int)
77
  parser.add_argument("--seed", default=0, type=int)
78
 
 
82
  args = parser.parse_args()
83
  return args
84
 
85
+ def load_v2():
86
+ model = MeshAnythingV2()
87
  print("load model over!!!")
88
 
89
  ckpt_path = hf_hub_download(
90
+ repo_id="Yiwen-ntu/MeshAnythingV2",
91
+ filename="350m.pth",
92
  )
 
 
 
 
93
 
94
+ load_model(model, ckpt_path)
95
+
96
  print("load weights over!!!")
97
  return model
98
  if __name__ == "__main__":
 
108
  kwargs_handlers=[kwargs]
109
  )
110
 
111
+ model = load_v2()
112
  # create dataset
113
  if args.input_dir is not None:
114
  input_list = sorted(os.listdir(args.input_dir))
 
146
 
147
  for batch_id in range(batch_size):
148
  recon_mesh = outputs[batch_id]
149
+ valid_mask = torch.all(~torch.isnan(recon_mesh.reshape((-1, 9))), dim=1)
150
+ recon_mesh = recon_mesh[valid_mask] # nvalid_face x 3 x 3
151
+
152
  vertices = recon_mesh.reshape(-1, 3).cpu()
153
  vertices_index = np.arange(len(vertices)) # 0, 1, ..., 3 x face
154
  triangles = vertices_index.reshape(-1, 3)
 
156
  scene_mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, force="mesh",
157
  merge_primitives=True)
158
  scene_mesh.merge_vertices()
159
+ scene_mesh.update_faces(scene_mesh.nondegenerate_faces())
160
  scene_mesh.update_faces(scene_mesh.unique_faces())
161
+ scene_mesh.remove_unreferenced_vertices()
162
  scene_mesh.fix_normals()
163
  save_path = os.path.join(checkpoint_dir, f'{batch_data_label["uid"][batch_id]}_gen.obj')
164
  num_faces = len(scene_mesh.faces)
mesh_to_pc.py CHANGED
@@ -3,7 +3,7 @@ import numpy as np
3
  import skimage.measure
4
  import trimesh
5
 
6
- def normalize_vertices(vertices, scale=0.9):
7
  bbmin, bbmax = vertices.min(0), vertices.max(0)
8
  center = (bbmin + bbmax) * 0.5
9
  scale = 2.0 * scale / (bbmax - bbmin).max()
@@ -39,7 +39,7 @@ def export_to_watertight(normalized_mesh, octree_depth: int = 7):
39
 
40
  return mesh
41
 
42
- def process_mesh_to_pc(mesh_list, marching_cubes = False, sample_num = 4096):
43
  # mesh_list : list of trimesh
44
  pc_normal_list = []
45
  return_mesh_list = []
 
3
  import skimage.measure
4
  import trimesh
5
 
6
+ def normalize_vertices(vertices, scale=0.95):
7
  bbmin, bbmax = vertices.min(0), vertices.max(0)
8
  center = (bbmin + bbmax) * 0.5
9
  scale = 2.0 * scale / (bbmax - bbmin).max()
 
39
 
40
  return mesh
41
 
42
+ def process_mesh_to_pc(mesh_list, marching_cubes = False, sample_num = 8192):
43
  # mesh_list : list of trimesh
44
  pc_normal_list = []
45
  return_mesh_list = []