Spaces:
Running
Running
TheresaQWQ
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForSequenceClassification
|
3 |
+
|
4 |
+
# Load the pre-trained model
|
5 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
6 |
+
'jinaai/jina-reranker-v2-base-multilingual',
|
7 |
+
torch_dtype="auto",
|
8 |
+
trust_remote_code=True,
|
9 |
+
)
|
10 |
+
|
11 |
+
model.eval()
|
12 |
+
|
13 |
+
def compute_scores(query, documents):
|
14 |
+
"""
|
15 |
+
Compute scores between a query and multiple documents using the loaded model.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
query (str): The input query string.
|
19 |
+
documents (list of str): List of document strings to compare against the query.
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
list of float: Scores representing the relevance of each document to the query.
|
23 |
+
"""
|
24 |
+
sentence_pairs = [[query, doc] for doc in documents]
|
25 |
+
scores = model.compute_score(sentence_pairs, max_length=1024)
|
26 |
+
return scores.tolist()
|
27 |
+
|
28 |
+
# Define Gradio interface
|
29 |
+
iface = gr.Interface(
|
30 |
+
fn=compute_scores,
|
31 |
+
inputs=[
|
32 |
+
gr.inputs.Textbox(lines=2, placeholder="Enter your query here..."),
|
33 |
+
gr.inputs.Textbox(lines=8, placeholder="Enter your documents separated by newlines...")
|
34 |
+
],
|
35 |
+
outputs="json",
|
36 |
+
title="Sentence Pair Scoring with Jina Reranker Model",
|
37 |
+
description="This tool computes the relevance scores between a given query and a set of documents using the Jina Reranker model."
|
38 |
+
)
|
39 |
+
|
40 |
+
# Launch the interface
|
41 |
+
if __name__ == "__main__":
|
42 |
+
iface.launch()
|