Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import subprocess | |
import re | |
import platform | |
import torch | |
import logging | |
import yt_dlp | |
import spaces | |
import gradio as gr | |
import assets.themes.loadThemes as loadThemes | |
from audio_separator.separator import Separator | |
from assets.i18n.i18n import I18nAuto | |
i18n = I18nAuto() | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
use_autocast = device == "cuda" | |
if os.path.isdir("env"): | |
if platform.system() == "Windows": | |
separator_location = ".\\env\\Scripts\\audio-separator.exe" | |
elif platform.system() == "Linux": | |
separator_location = "env/bin/audio-separator" | |
else: | |
separator_location = "audio-separator" | |
#=========================# | |
# Roformer Models # | |
#=========================# | |
roformer_models = { | |
'BS-Roformer-Viperx-1297': 'model_bs_roformer_ep_317_sdr_12.9755.ckpt', | |
'BS-Roformer-Viperx-1296': 'model_bs_roformer_ep_368_sdr_12.9628.ckpt', | |
'BS-Roformer-Viperx-1053': 'model_bs_roformer_ep_937_sdr_10.5309.ckpt', | |
'Mel-Roformer-Viperx-1143': 'model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt', | |
'BS-Roformer-De-Reverb': 'deverb_bs_roformer_8_384dim_10depth.ckpt', | |
'Mel-Roformer-Crowd-Aufr33-Viperx': 'mel_band_roformer_crowd_aufr33_viperx_sdr_8.7144.ckpt', | |
'Mel-Roformer-Denoise-Aufr33': 'denoise_mel_band_roformer_aufr33_sdr_27.9959.ckpt', | |
'Mel-Roformer-Denoise-Aufr33-Aggr' : 'denoise_mel_band_roformer_aufr33_aggr_sdr_27.9768.ckpt', | |
'Mel-Roformer-Karaoke-Aufr33-Viperx': 'mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt', | |
'MelBand Roformer | Vocals by Kimberley Jensen' : 'vocals_mel_band_roformer.ckpt', | |
'MelBand Roformer Kim | FT by unwa' : 'mel_band_roformer_kim_ft_unwa.ckpt', | |
'MelBand Roformer Kim | Inst V1 by Unwa' : 'melband_roformer_inst_v1.ckpt', | |
'MelBand Roformer Kim | Inst V1 (E) by Unwa' : 'melband_roformer_inst_v1e.ckpt', | |
'MelBand Roformer Kim | Inst V2 by Unwa' : 'melband_roformer_inst_v2.ckpt', | |
'MelBand Roformer Kim | InstVoc Duality V1 by Unwa' : 'melband_roformer_instvoc_duality_v1.ckpt', | |
'MelBand Roformer Kim | InstVoc Duality V2 by Unwa' : 'melband_roformer_instvox_duality_v2.ckpt', | |
'MelBand Roformer | De-Reverb by anvuew' : 'dereverb_mel_band_roformer_anvuew_sdr_19.1729.ckpt', | |
'MelBand Roformer | De-Reverb Less Aggressive by anvuew' : 'dereverb_mel_band_roformer_less_aggressive_anvuew_sdr_18.8050.ckpt', | |
'MelBand Roformer | De-Reverb-Echo by Sucial' : 'dereverb-echo_mel_band_roformer_sdr_10.0169.ckpt', | |
'MelBand Roformer | De-Reverb-Echo V2 by Sucial' : 'dereverb-echo_mel_band_roformer_sdr_13.4843_v2.ckpt', | |
'MelBand Roformer Kim | SYHFT by SYH99999' : 'MelBandRoformerSYHFT.ckpt', | |
'MelBand Roformer Kim | SYHFT V2 by SYH99999' : 'MelBandRoformerSYHFTV2.ckpt', | |
'MelBand Roformer Kim | SYHFT V2.5 by SYH99999' : 'MelBandRoformerSYHFTV2.5.ckpt', | |
'MelBand Roformer Kim | SYHFT V3 by SYH99999' : 'MelBandRoformerSYHFTV3Epsilon.ckpt', | |
'MelBand Roformer Kim | Big SYHFT V1 by SYH99999' : 'MelBandRoformerBigSYHFTV1.ckpt', | |
'MelBand Roformer Kim | Big Beta 4 FT by unwa' : 'melband_roformer_big_beta4.ckpt', | |
'MelBand Roformer Kim | Big Beta 5e FT by unwa' : 'melband_roformer_big_beta5e.ckpt', | |
'BS Roformer | Chorus Male-Female by Sucial' : 'model_chorus_bs_roformer_ep_267_sdr_24.1275.ckpt', | |
'MelBand Roformer | Aspiration by Sucial' : 'aspiration_mel_band_roformer_sdr_18.9845.ckpt', | |
'MelBand Roformer | Aspiration Less Aggressive by Sucial' : 'aspiration_mel_band_roformer_less_aggr_sdr_18.1201.ckpt', | |
'MelBand Roformer | Bleed Suppressor V1 by unwa-97chris' : 'mel_band_roformer_bleed_suppressor_v1.ckpt' | |
} | |
#=========================# | |
# MDX23C Models # | |
#=========================# | |
mdx23c_models = [ | |
'MDX23C_D1581.ckpt', | |
'MDX23C-8KFFT-InstVoc_HQ.ckpt', | |
'MDX23C-8KFFT-InstVoc_HQ_2.ckpt', | |
'MDX23C-De-Reverb-aufr33-jarredou.ckpt', | |
'MDX23C-DrumSep-aufr33-jarredou.ckpt' | |
] | |
#=========================# | |
# MDXN-NET Models # | |
#=========================# | |
mdxnet_models = [ | |
'UVR-MDX-NET-Inst_full_292.onnx', | |
'UVR-MDX-NET_Inst_187_beta.onnx', | |
'UVR-MDX-NET_Inst_82_beta.onnx', | |
'UVR-MDX-NET_Inst_90_beta.onnx', | |
'UVR-MDX-NET_Main_340.onnx', | |
'UVR-MDX-NET_Main_390.onnx', | |
'UVR-MDX-NET_Main_406.onnx', | |
'UVR-MDX-NET_Main_427.onnx', | |
'UVR-MDX-NET_Main_438.onnx', | |
'UVR-MDX-NET-Inst_HQ_1.onnx', | |
'UVR-MDX-NET-Inst_HQ_2.onnx', | |
'UVR-MDX-NET-Inst_HQ_3.onnx', | |
'UVR-MDX-NET-Inst_HQ_4.onnx', | |
'UVR-MDX-NET-Inst_HQ_5.onnx', | |
'UVR_MDXNET_Main.onnx', | |
'UVR-MDX-NET-Inst_Main.onnx', | |
'UVR_MDXNET_1_9703.onnx', | |
'UVR_MDXNET_2_9682.onnx', | |
'UVR_MDXNET_3_9662.onnx', | |
'UVR-MDX-NET-Inst_1.onnx', | |
'UVR-MDX-NET-Inst_2.onnx', | |
'UVR-MDX-NET-Inst_3.onnx', | |
'UVR_MDXNET_KARA.onnx', | |
'UVR_MDXNET_KARA_2.onnx', | |
'UVR_MDXNET_9482.onnx', | |
'UVR-MDX-NET-Voc_FT.onnx', | |
'Kim_Vocal_1.onnx', | |
'Kim_Vocal_2.onnx', | |
'Kim_Inst.onnx', | |
'Reverb_HQ_By_FoxJoy.onnx', | |
'UVR-MDX-NET_Crowd_HQ_1.onnx', | |
'kuielab_a_vocals.onnx', | |
'kuielab_a_other.onnx', | |
'kuielab_a_bass.onnx', | |
'kuielab_a_drums.onnx', | |
'kuielab_b_vocals.onnx', | |
'kuielab_b_other.onnx', | |
'kuielab_b_bass.onnx', | |
'kuielab_b_drums.onnx', | |
] | |
#========================# | |
# VR-ARCH Models # | |
#========================# | |
vrarch_models = [ | |
'1_HP-UVR.pth', | |
'2_HP-UVR.pth', | |
'3_HP-Vocal-UVR.pth', | |
'4_HP-Vocal-UVR.pth', | |
'5_HP-Karaoke-UVR.pth', | |
'6_HP-Karaoke-UVR.pth', | |
'7_HP2-UVR.pth', | |
'8_HP2-UVR.pth', | |
'9_HP2-UVR.pth', | |
'10_SP-UVR-2B-32000-1.pth', | |
'11_SP-UVR-2B-32000-2.pth', | |
'12_SP-UVR-3B-44100.pth', | |
'13_SP-UVR-4B-44100-1.pth', | |
'14_SP-UVR-4B-44100-2.pth', | |
'15_SP-UVR-MID-44100-1.pth', | |
'16_SP-UVR-MID-44100-2.pth', | |
'17_HP-Wind_Inst-UVR.pth', | |
'UVR-De-Echo-Aggressive.pth', | |
'UVR-De-Echo-Normal.pth', | |
'UVR-DeEcho-DeReverb.pth', | |
'UVR-De-Reverb-aufr33-jarredou.pth', | |
'UVR-DeNoise-Lite.pth', | |
'UVR-DeNoise.pth', | |
'UVR-BVE-4B_SN-44100-1.pth', | |
'MGM_HIGHEND_v4.pth', | |
'MGM_LOWEND_A_v4.pth', | |
'MGM_LOWEND_B_v4.pth', | |
'MGM_MAIN_v4.pth', | |
] | |
#=======================# | |
# DEMUCS Models # | |
#=======================# | |
demucs_models = [ | |
'htdemucs_ft.yaml', | |
'htdemucs_6s.yaml', | |
'htdemucs.yaml', | |
'hdemucs_mmi.yaml', | |
] | |
output_format = [ | |
'wav', | |
'flac', | |
'mp3', | |
'ogg', | |
'opus', | |
'm4a', | |
'aiff', | |
'ac3' | |
] | |
found_files = [] | |
logs = [] | |
out_dir = "./outputs" | |
models_dir = "./models" | |
extensions = (".wav", ".flac", ".mp3", ".ogg", ".opus", ".m4a", ".aiff", ".ac3") | |
def download_audio(url, output_dir="ytdl"): | |
os.makedirs(output_dir, exist_ok=True) | |
ydl_opts = { | |
'format': 'bestaudio/best', | |
'postprocessors': [{ | |
'key': 'FFmpegExtractAudio', | |
'preferredcodec': 'wav', | |
'preferredquality': '32', | |
}], | |
'outtmpl': os.path.join(output_dir, '%(title)s.%(ext)s'), | |
'postprocessor_args': [ | |
'-acodec', 'pcm_f32le' | |
], | |
} | |
try: | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
info = ydl.extract_info(url, download=False) | |
video_title = info['title'] | |
ydl.download([url]) | |
file_path = os.path.join(output_dir, f"{video_title}.wav") | |
if os.path.exists(file_path): | |
return os.path.abspath(file_path) | |
else: | |
raise Exception("Something went wrong") | |
except Exception as e: | |
raise Exception(f"Error extracting audio with yt-dlp: {str(e)}") | |
def leaderboard(list_filter): | |
try: | |
result = subprocess.run( | |
[separator_location, "-l", f"--list_filter={list_filter}"], | |
capture_output=True, | |
text=True, | |
) | |
if result.returncode != 0: | |
return f"Error: {result.stderr}" | |
return "<table border='1'>" + "".join( | |
f"<tr style='{'font-weight: bold; font-size: 1.2em;' if i == 0 else ''}'>" + | |
"".join(f"<td>{cell}</td>" for cell in re.split(r"\s{2,}", line.strip())) + | |
"</tr>" | |
for i, line in enumerate(re.findall(r"^(?!-+)(.+)$", result.stdout.strip(), re.MULTILINE)) | |
) + "</table>" | |
except Exception as e: | |
return f"Error: {e}" | |
def roformer_separator(audio, model_key, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh, single_stem, progress=gr.Progress(track_tqdm=True)): | |
base_name = os.path.splitext(os.path.basename(audio))[0] | |
roformer_model = roformer_models[model_key] | |
try: | |
separator = Separator( | |
log_level=logging.WARNING, | |
model_file_dir=models_dir, | |
output_dir=out_dir, | |
output_format=out_format, | |
use_autocast=use_autocast, | |
normalization_threshold=norm_thresh, | |
amplification_threshold=amp_thresh, | |
output_single_stem=single_stem, | |
mdxc_params={ | |
"segment_size": segment_size, | |
"override_model_segment_size": override_seg_size, | |
"batch_size": batch_size, | |
"overlap": overlap, | |
} | |
) | |
progress(0.2, desc="Loading model...") | |
separator.load_model(model_filename=roformer_model) | |
progress(0.7, desc="Separating audio...") | |
separation = separator.separate(audio) | |
stems = [os.path.join(out_dir, file_name) for file_name in separation] | |
if single_stem.strip(): | |
return stems[0], None | |
return stems[0], stems[1] | |
except Exception as e: | |
raise RuntimeError(f"Roformer separation failed: {e}") from e | |
def mdxc_separator(audio, model, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh, single_stem, progress=gr.Progress(track_tqdm=True)): | |
base_name = os.path.splitext(os.path.basename(audio))[0] | |
try: | |
separator = Separator( | |
log_level=logging.WARNING, | |
model_file_dir=models_dir, | |
output_dir=out_dir, | |
output_format=out_format, | |
use_autocast=use_autocast, | |
normalization_threshold=norm_thresh, | |
amplification_threshold=amp_thresh, | |
output_single_stem=single_stem, | |
mdxc_params={ | |
"segment_size": segment_size, | |
"override_model_segment_size": override_seg_size, | |
"batch_size": batch_size, | |
"overlap": overlap, | |
} | |
) | |
progress(0.2, desc="Loading model...") | |
separator.load_model(model_filename=model) | |
progress(0.7, desc="Separating audio...") | |
separation = separator.separate(audio) | |
stems = [os.path.join(out_dir, file_name) for file_name in separation] | |
if single_stem.strip(): | |
return stems[0], None | |
return stems[0], stems[1] | |
except Exception as e: | |
raise RuntimeError(f"MDX23C separation failed: {e}") from e | |
def mdxnet_separator(audio, model, out_format, hop_length, segment_size, denoise, overlap, batch_size, norm_thresh, amp_thresh, single_stem, progress=gr.Progress(track_tqdm=True)): | |
base_name = os.path.splitext(os.path.basename(audio))[0] | |
try: | |
separator = Separator( | |
log_level=logging.WARNING, | |
model_file_dir=models_dir, | |
output_dir=out_dir, | |
output_format=out_format, | |
use_autocast=use_autocast, | |
normalization_threshold=norm_thresh, | |
amplification_threshold=amp_thresh, | |
output_single_stem=single_stem, | |
mdx_params={ | |
"hop_length": hop_length, | |
"segment_size": segment_size, | |
"overlap": overlap, | |
"batch_size": batch_size, | |
"enable_denoise": denoise, | |
} | |
) | |
progress(0.2, desc="Loading model...") | |
separator.load_model(model_filename=model) | |
progress(0.7, desc="Separating audio...") | |
separation = separator.separate(audio) | |
stems = [os.path.join(out_dir, file_name) for file_name in separation] | |
if single_stem.strip(): | |
return stems[0], None | |
return stems[0], stems[1] | |
except Exception as e: | |
raise RuntimeError(f"MDX-NET separation failed: {e}") from e | |
def vrarch_separator(audio, model, out_format, window_size, aggression, tta, post_process, post_process_threshold, high_end_process, batch_size, norm_thresh, amp_thresh, single_stem, progress=gr.Progress(track_tqdm=True)): | |
base_name = os.path.splitext(os.path.basename(audio))[0] | |
try: | |
separator = Separator( | |
log_level=logging.WARNING, | |
model_file_dir=models_dir, | |
output_dir=out_dir, | |
output_format=out_format, | |
use_autocast=use_autocast, | |
normalization_threshold=norm_thresh, | |
amplification_threshold=amp_thresh, | |
output_single_stem=single_stem, | |
vr_params={ | |
"batch_size": batch_size, | |
"window_size": window_size, | |
"aggression": aggression, | |
"enable_tta": tta, | |
"enable_post_process": post_process, | |
"post_process_threshold": post_process_threshold, | |
"high_end_process": high_end_process, | |
} | |
) | |
progress(0.2, desc="Loading model...") | |
separator.load_model(model_filename=model) | |
progress(0.7, desc="Separating audio...") | |
separation = separator.separate(audio) | |
stems = [os.path.join(out_dir, file_name) for file_name in separation] | |
if single_stem.strip(): | |
return stems[0], None | |
return stems[0], stems[1] | |
except Exception as e: | |
raise RuntimeError(f"VR ARCH separation failed: {e}") from e | |
def demucs_separator(audio, model, out_format, shifts, segment_size, segments_enabled, overlap, batch_size, norm_thresh, amp_thresh, progress=gr.Progress(track_tqdm=True)): | |
base_name = os.path.splitext(os.path.basename(audio))[0] | |
try: | |
separator = Separator( | |
log_level=logging.WARNING, | |
model_file_dir=models_dir, | |
output_dir=out_dir, | |
output_format=out_format, | |
use_autocast=use_autocast, | |
normalization_threshold=norm_thresh, | |
amplification_threshold=amp_thresh, | |
demucs_params={ | |
"batch_size": batch_size, | |
"segment_size": segment_size, | |
"shifts": shifts, | |
"overlap": overlap, | |
"segments_enabled": segments_enabled, | |
} | |
) | |
progress(0.2, desc="Loading model...") | |
separator.load_model(model_filename=model) | |
progress(0.7, desc="Separating audio...") | |
separation = separator.separate(audio) | |
stems = [os.path.join(out_dir, file_name) for file_name in separation] | |
if model == "htdemucs_6s.yaml": | |
return stems[0], stems[1], stems[2], stems[3], stems[4], stems[5] | |
else: | |
return stems[0], stems[1], stems[2], stems[3], None, None | |
except Exception as e: | |
raise RuntimeError(f"Demucs separation failed: {e}") from e | |
def update_stems(model): | |
if model == "htdemucs_6s.yaml": | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
def roformer_batch(path_input, path_output, model_key, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh, single_stem): | |
found_files.clear() | |
logs.clear() | |
roformer_model = roformer_models[model_key] | |
for audio_files in os.listdir(path_input): | |
if audio_files.endswith(extensions): | |
found_files.append(audio_files) | |
total_files = len(found_files) | |
if total_files == 0: | |
logs.append("No valid audio files.") | |
yield "\n".join(logs) | |
else: | |
logs.append(f"{total_files} audio files found") | |
found_files.sort() | |
for audio_files in found_files: | |
file_path = os.path.join(path_input, audio_files) | |
base_name = os.path.splitext(os.path.basename(file_path))[0] | |
try: | |
separator = Separator( | |
log_level=logging.WARNING, | |
model_file_dir=models_dir, | |
output_dir=path_output, | |
output_format=out_format, | |
use_autocast=use_autocast, | |
normalization_threshold=norm_thresh, | |
amplification_threshold=amp_thresh, | |
output_single_stem=single_stem, | |
mdxc_params={ | |
"segment_size": segment_size, | |
"override_model_segment_size": override_seg_size, | |
"batch_size": batch_size, | |
"overlap": overlap, | |
} | |
) | |
logs.append("Loading model...") | |
yield "\n".join(logs) | |
separator.load_model(model_filename=roformer_model) | |
logs.append(f"Separating file: {audio_files}") | |
yield "\n".join(logs) | |
separator.separate(file_path) | |
logs.append(f"File: {audio_files} separated!") | |
yield "\n".join(logs) | |
except Exception as e: | |
raise RuntimeError(f"Roformer batch separation failed: {e}") from e | |
def mdx23c_batch(path_input, path_output, model, out_format, segment_size, override_seg_size, overlap, batch_size, norm_thresh, amp_thresh, single_stem): | |
found_files.clear() | |
logs.clear() | |
for audio_files in os.listdir(path_input): | |
if audio_files.endswith(extensions): | |
found_files.append(audio_files) | |
total_files = len(found_files) | |
if total_files == 0: | |
logs.append("No valid audio files.") | |
yield "\n".join(logs) | |
else: | |
logs.append(f"{total_files} audio files found") | |
found_files.sort() | |
for audio_files in found_files: | |
file_path = os.path.join(path_input, audio_files) | |
base_name = os.path.splitext(os.path.basename(file_path))[0] | |
try: | |
separator = Separator( | |
log_level=logging.WARNING, | |
model_file_dir=models_dir, | |
output_dir=path_output, | |
output_format=out_format, | |
use_autocast=use_autocast, | |
normalization_threshold=norm_thresh, | |
amplification_threshold=amp_thresh, | |
output_single_stem=single_stem, | |
mdxc_params={ | |
"segment_size": segment_size, | |
"override_model_segment_size": override_seg_size, | |
"batch_size": batch_size, | |
"overlap": overlap, | |
} | |
) | |
logs.append("Loading model...") | |
yield "\n".join(logs) | |
separator.load_model(model_filename=model) | |
logs.append(f"Separating file: {audio_files}") | |
yield "\n".join(logs) | |
separator.separate(file_path) | |
logs.append(f"File: {audio_files} separated!") | |
yield "\n".join(logs) | |
except Exception as e: | |
raise RuntimeError(f"Roformer batch separation failed: {e}") from e | |
def mdxnet_batch(path_input, path_output, model, out_format, hop_length, segment_size, denoise, overlap, batch_size, norm_thresh, amp_thresh, single_stem): | |
found_files.clear() | |
logs.clear() | |
for audio_files in os.listdir(path_input): | |
if audio_files.endswith(extensions): | |
found_files.append(audio_files) | |
total_files = len(found_files) | |
if total_files == 0: | |
logs.append("No valid audio files.") | |
yield "\n".join(logs) | |
else: | |
logs.append(f"{total_files} audio files found") | |
found_files.sort() | |
for audio_files in found_files: | |
file_path = os.path.join(path_input, audio_files) | |
base_name = os.path.splitext(os.path.basename(file_path))[0] | |
try: | |
separator = Separator( | |
log_level=logging.WARNING, | |
model_file_dir=models_dir, | |
output_dir=path_output, | |
output_format=out_format, | |
use_autocast=use_autocast, | |
normalization_threshold=norm_thresh, | |
amplification_threshold=amp_thresh, | |
output_single_stem=single_stem, | |
mdx_params={ | |
"hop_length": hop_length, | |
"segment_size": segment_size, | |
"overlap": overlap, | |
"batch_size": batch_size, | |
"enable_denoise": denoise, | |
} | |
) | |
logs.append("Loading model...") | |
yield "\n".join(logs) | |
separator.load_model(model_filename=model) | |
logs.append(f"Separating file: {audio_files}") | |
yield "\n".join(logs) | |
separator.separate(file_path) | |
logs.append(f"File: {audio_files} separated!") | |
yield "\n".join(logs) | |
except Exception as e: | |
raise RuntimeError(f"Roformer batch separation failed: {e}") from e | |
def vrarch_batch(path_input, path_output, model, out_format, window_size, aggression, tta, post_process, post_process_threshold, high_end_process, batch_size, norm_thresh, amp_thresh, single_stem): | |
found_files.clear() | |
logs.clear() | |
for audio_files in os.listdir(path_input): | |
if audio_files.endswith(extensions): | |
found_files.append(audio_files) | |
total_files = len(found_files) | |
if total_files == 0: | |
logs.append("No valid audio files.") | |
yield "\n".join(logs) | |
else: | |
logs.append(f"{total_files} audio files found") | |
found_files.sort() | |
for audio_files in found_files: | |
file_path = os.path.join(path_input, audio_files) | |
base_name = os.path.splitext(os.path.basename(file_path))[0] | |
try: | |
separator = Separator( | |
log_level=logging.WARNING, | |
model_file_dir=models_dir, | |
output_dir=path_output, | |
output_format=out_format, | |
use_autocast=use_autocast, | |
normalization_threshold=norm_thresh, | |
amplification_threshold=amp_thresh, | |
output_single_stem=single_stem, | |
vr_params={ | |
"batch_size": batch_size, | |
"window_size": window_size, | |
"aggression": aggression, | |
"enable_tta": tta, | |
"enable_post_process": post_process, | |
"post_process_threshold": post_process_threshold, | |
"high_end_process": high_end_process, | |
} | |
) | |
logs.append("Loading model...") | |
yield "\n".join(logs) | |
separator.load_model(model_filename=model) | |
logs.append(f"Separating file: {audio_files}") | |
yield "\n".join(logs) | |
separator.separate(file_path) | |
logs.append(f"File: {audio_files} separated!") | |
yield "\n".join(logs) | |
except Exception as e: | |
raise RuntimeError(f"Roformer batch separation failed: {e}") from e | |
def demucs_batch(path_input, path_output, model, out_format, shifts, segment_size, segments_enabled, overlap, batch_size, norm_thresh, amp_thresh): | |
found_files.clear() | |
logs.clear() | |
for audio_files in os.listdir(path_input): | |
if audio_files.endswith(extensions): | |
found_files.append(audio_files) | |
total_files = len(found_files) | |
if total_files == 0: | |
logs.append("No valid audio files.") | |
yield "\n".join(logs) | |
else: | |
logs.append(f"{total_files} audio files found") | |
found_files.sort() | |
for audio_files in found_files: | |
file_path = os.path.join(path_input, audio_files) | |
try: | |
separator = Separator( | |
log_level=logging.WARNING, | |
model_file_dir=models_dir, | |
output_dir=path_output, | |
output_format=out_format, | |
use_autocast=use_autocast, | |
normalization_threshold=norm_thresh, | |
amplification_threshold=amp_thresh, | |
demucs_params={ | |
"batch_size": batch_size, | |
"segment_size": segment_size, | |
"shifts": shifts, | |
"overlap": overlap, | |
"segments_enabled": segments_enabled, | |
} | |
) | |
logs.append("Loading model...") | |
yield "\n".join(logs) | |
separator.load_model(model_filename=model) | |
logs.append(f"Separating file: {audio_files}") | |
yield "\n".join(logs) | |
separator.separate(file_path) | |
logs.append(f"File: {audio_files} separated!") | |
yield "\n".join(logs) | |
except Exception as e: | |
raise RuntimeError(f"Roformer batch separation failed: {e}") from e | |
with gr.Blocks(theme = loadThemes.load_json() or "NoCrypt/miku", title = "🎵 UVR5 UI 🎵") as app: | |
gr.Markdown("<h1> 🎵 UVR5 UI 🎵 </h1>") | |
gr.Markdown(i18n("If you liked this HF Space you can give me a ❤️")) | |
gr.Markdown(i18n("Try UVR5 UI using Colab [here](https://colab.research.google.com/github/Eddycrack864/UVR5-UI/blob/main/UVR_UI.ipynb)")) | |
with gr.Tabs(): | |
with gr.TabItem("BS/Mel Roformer"): | |
with gr.Row(): | |
roformer_model = gr.Dropdown( | |
label = i18n("Select the model"), | |
choices = list(roformer_models.keys()), | |
value = lambda : None, | |
interactive = True | |
) | |
roformer_output_format = gr.Dropdown( | |
label = i18n("Select the output format"), | |
choices = output_format, | |
value = lambda : None, | |
interactive = True | |
) | |
with gr.Accordion(i18n("Advanced settings"), open = False): | |
with gr.Group(): | |
with gr.Row(): | |
roformer_segment_size = gr.Slider( | |
label = i18n("Segment size"), | |
info = i18n("Larger consumes more resources, but may give better results"), | |
minimum = 32, | |
maximum = 4000, | |
step = 32, | |
value = 256, | |
interactive = True | |
) | |
roformer_override_segment_size = gr.Checkbox( | |
label = i18n("Override segment size"), | |
info = i18n("Override model default segment size instead of using the model default value"), | |
value = False, | |
interactive = True | |
) | |
with gr.Row(): | |
roformer_overlap = gr.Slider( | |
label = i18n("Overlap"), | |
info = i18n("Amount of overlap between prediction windows"), | |
minimum = 2, | |
maximum = 10, | |
step = 1, | |
value = 8, | |
interactive = True | |
) | |
roformer_batch_size = gr.Slider( | |
label = i18n("Batch size"), | |
info = i18n("Larger consumes more RAM but may process slightly faster"), | |
minimum = 1, | |
maximum = 16, | |
step = 1, | |
value = 1, | |
interactive = True | |
) | |
with gr.Row(): | |
roformer_normalization_threshold = gr.Slider( | |
label = i18n("Normalization threshold"), | |
info = i18n("The threshold for audio normalization"), | |
minimum = 0.1, | |
maximum = 1, | |
step = 0.1, | |
value = 0.9, | |
interactive = True | |
) | |
roformer_amplification_threshold = gr.Slider( | |
label = i18n("Amplification threshold"), | |
info = i18n("The threshold for audio amplification"), | |
minimum = 0.1, | |
maximum = 1, | |
step = 0.1, | |
value = 0.7, | |
interactive = True | |
) | |
with gr.Row(): | |
roformer_single_stem = gr.Textbox( | |
label = i18n("Output only single stem"), | |
placeholder = i18n("Write the stem you want, check the stems of each model on Leaderboard. e.g. Instrumental"), | |
interactive = True | |
) | |
with gr.Row(): | |
roformer_audio = gr.Audio( | |
label = i18n("Input audio"), | |
type = "filepath", | |
interactive = True | |
) | |
with gr.Accordion(i18n("Separation by link"), open = False): | |
with gr.Row(): | |
roformer_link = gr.Textbox( | |
label = i18n("Link"), | |
placeholder = i18n("Paste the link here"), | |
interactive = True | |
) | |
with gr.Row(): | |
gr.Markdown(i18n("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)")) | |
with gr.Row(): | |
roformer_download_button = gr.Button( | |
i18n("Download!"), | |
variant = "primary" | |
) | |
roformer_download_button.click(download_audio, [roformer_link], [roformer_audio]) | |
with gr.Accordion(i18n("Batch separation"), open = False): | |
with gr.Row(): | |
roformer_input_path = gr.Textbox( | |
label = i18n("Input path"), | |
placeholder = i18n("Place the input path here"), | |
interactive = True | |
) | |
roformer_output_path = gr.Textbox( | |
label = i18n("Output path"), | |
placeholder = i18n("Place the output path here"), | |
interactive = True | |
) | |
with gr.Row(): | |
roformer_bath_button = gr.Button(i18n("Separate!"), variant = "primary") | |
with gr.Row(): | |
roformer_info = gr.Textbox( | |
label = i18n("Output information"), | |
interactive = False | |
) | |
roformer_bath_button.click(roformer_batch, [roformer_input_path, roformer_output_path, roformer_model, roformer_output_format, roformer_segment_size, roformer_override_segment_size, roformer_overlap, roformer_batch_size, roformer_normalization_threshold, roformer_amplification_threshold, roformer_single_stem], [roformer_info]) | |
with gr.Row(): | |
roformer_button = gr.Button(i18n("Separate!"), variant = "primary") | |
with gr.Row(): | |
roformer_stem1 = gr.Audio( | |
show_download_button = True, | |
interactive = False, | |
label = i18n("Stem 1"), | |
type = "filepath" | |
) | |
roformer_stem2 = gr.Audio( | |
show_download_button = True, | |
interactive = False, | |
label = i18n("Stem 2"), | |
type = "filepath" | |
) | |
roformer_button.click(roformer_separator, [roformer_audio, roformer_model, roformer_output_format, roformer_segment_size, roformer_override_segment_size, roformer_overlap, roformer_batch_size, roformer_normalization_threshold, roformer_amplification_threshold, roformer_single_stem], [roformer_stem1, roformer_stem2]) | |
with gr.TabItem("MDX23C"): | |
with gr.Row(): | |
mdx23c_model = gr.Dropdown( | |
label = i18n("Select the model"), | |
choices = mdx23c_models, | |
value = lambda : None, | |
interactive = True | |
) | |
mdx23c_output_format = gr.Dropdown( | |
label = i18n("Select the output format"), | |
choices = output_format, | |
value = lambda : None, | |
interactive = True | |
) | |
with gr.Accordion(i18n("Advanced settings"), open = False): | |
with gr.Group(): | |
with gr.Row(): | |
mdx23c_segment_size = gr.Slider( | |
minimum = 32, | |
maximum = 4000, | |
step = 32, | |
label = i18n("Segment size"), | |
info = i18n("Larger consumes more resources, but may give better results"), | |
value = 256, | |
interactive = True | |
) | |
mdx23c_override_segment_size = gr.Checkbox( | |
label = i18n("Override segment size"), | |
info = i18n("Override model default segment size instead of using the model default value"), | |
value = False, | |
interactive = True | |
) | |
with gr.Row(): | |
mdx23c_overlap = gr.Slider( | |
minimum = 2, | |
maximum = 50, | |
step = 1, | |
label = i18n("Overlap"), | |
info = i18n("Amount of overlap between prediction windows"), | |
value = 8, | |
interactive = True | |
) | |
mdx23c_batch_size = gr.Slider( | |
label = i18n("Batch size"), | |
info = i18n("Larger consumes more RAM but may process slightly faster"), | |
minimum = 1, | |
maximum = 16, | |
step = 1, | |
value = 1, | |
interactive = True | |
) | |
with gr.Row(): | |
mdx23c_normalization_threshold = gr.Slider( | |
label = i18n("Normalization threshold"), | |
info = i18n("The threshold for audio normalization"), | |
minimum = 0.1, | |
maximum = 1, | |
step = 0.1, | |
value = 0.9, | |
interactive = True | |
) | |
mdx23c_amplification_threshold = gr.Slider( | |
label = i18n("Amplification threshold"), | |
info = i18n("The threshold for audio amplification"), | |
minimum = 0.1, | |
maximum = 1, | |
step = 0.1, | |
value = 0.7, | |
interactive = True | |
) | |
with gr.Row(): | |
mdx23c_single_stem = gr.Textbox( | |
label = i18n("Output only single stem"), | |
placeholder = i18n("Write the stem you want, check the stems of each model on Leaderboard. e.g. Instrumental"), | |
interactive = True | |
) | |
with gr.Row(): | |
mdx23c_audio = gr.Audio( | |
label = i18n("Input audio"), | |
type = "filepath", | |
interactive = True | |
) | |
with gr.Accordion(i18n("Separation by link"), open = False): | |
with gr.Row(): | |
mdx23c_link = gr.Textbox( | |
label = i18n("Link"), | |
placeholder = i18n("Paste the link here"), | |
interactive = True | |
) | |
with gr.Row(): | |
gr.Markdown(i18n("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)")) | |
with gr.Row(): | |
mdx23c_download_button = gr.Button( | |
i18n("Download!"), | |
variant = "primary" | |
) | |
mdx23c_download_button.click(download_audio, [mdx23c_link], [mdx23c_audio]) | |
with gr.Accordion(i18n("Batch separation"), open = False): | |
with gr.Row(): | |
mdx23c_input_path = gr.Textbox( | |
label = i18n("Input path"), | |
placeholder = i18n("Place the input path here"), | |
interactive = True | |
) | |
mdx23c_output_path = gr.Textbox( | |
label = i18n("Output path"), | |
placeholder = i18n("Place the output path here"), | |
interactive = True | |
) | |
with gr.Row(): | |
mdx23c_bath_button = gr.Button(i18n("Separate!"), variant = "primary") | |
with gr.Row(): | |
mdx23c_info = gr.Textbox( | |
label = i18n("Output information"), | |
interactive = False | |
) | |
mdx23c_bath_button.click(mdx23c_batch, [mdx23c_input_path, mdx23c_output_path, mdx23c_model, mdx23c_output_format, mdx23c_segment_size, mdx23c_override_segment_size, mdx23c_overlap, mdx23c_batch_size, mdx23c_normalization_threshold, mdx23c_amplification_threshold, mdx23c_single_stem], [mdx23c_info]) | |
with gr.Row(): | |
mdx23c_button = gr.Button(i18n("Separate!"), variant = "primary") | |
with gr.Row(): | |
mdx23c_stem1 = gr.Audio( | |
show_download_button = True, | |
interactive = False, | |
label = i18n("Stem 1"), | |
type = "filepath" | |
) | |
mdx23c_stem2 = gr.Audio( | |
show_download_button = True, | |
interactive = False, | |
label = i18n("Stem 2"), | |
type = "filepath" | |
) | |
mdx23c_button.click(mdxc_separator, [mdx23c_audio, mdx23c_model, mdx23c_output_format, mdx23c_segment_size, mdx23c_override_segment_size, mdx23c_overlap, mdx23c_batch_size, mdx23c_normalization_threshold, mdx23c_amplification_threshold, mdx23c_single_stem], [mdx23c_stem1, mdx23c_stem2]) | |
with gr.TabItem("MDX-NET"): | |
with gr.Row(): | |
mdxnet_model = gr.Dropdown( | |
label = i18n("Select the model"), | |
choices = mdxnet_models, | |
value = lambda : None, | |
interactive = True | |
) | |
mdxnet_output_format = gr.Dropdown( | |
label = i18n("Select the output format"), | |
choices = output_format, | |
value = lambda : None, | |
interactive = True | |
) | |
with gr.Accordion(i18n("Advanced settings"), open = False): | |
with gr.Group(): | |
with gr.Row(): | |
mdxnet_hop_length = gr.Slider( | |
label = i18n("Hop length"), | |
info = i18n("Usually called stride in neural networks; only change if you know what you're doing"), | |
minimum = 32, | |
maximum = 2048, | |
step = 32, | |
value = 1024, | |
interactive = True | |
) | |
mdxnet_segment_size = gr.Slider( | |
minimum = 32, | |
maximum = 4000, | |
step = 32, | |
label = i18n("Segment size"), | |
info = i18n("Larger consumes more resources, but may give better results"), | |
value = 256, | |
interactive = True | |
) | |
mdxnet_denoise = gr.Checkbox( | |
label = i18n("Denoise"), | |
info = i18n("Enable denoising during separation"), | |
value = True, | |
interactive = True | |
) | |
with gr.Row(): | |
mdxnet_overlap = gr.Slider( | |
label = i18n("Overlap"), | |
info = i18n("Amount of overlap between prediction windows"), | |
minimum = 0.001, | |
maximum = 0.999, | |
step = 0.001, | |
value = 0.25, | |
interactive = True | |
) | |
mdxnet_batch_size = gr.Slider( | |
label = i18n("Batch size"), | |
info = i18n("Larger consumes more RAM but may process slightly faster"), | |
minimum = 1, | |
maximum = 16, | |
step = 1, | |
value = 1, | |
interactive = True | |
) | |
with gr.Row(): | |
mdxnet_normalization_threshold = gr.Slider( | |
label = i18n("Normalization threshold"), | |
info = i18n("The threshold for audio normalization"), | |
minimum = 0.1, | |
maximum = 1, | |
step = 0.1, | |
value = 0.9, | |
interactive = True | |
) | |
mdxnet_amplification_threshold = gr.Slider( | |
label = i18n("Amplification threshold"), | |
info = i18n("The threshold for audio amplification"), | |
minimum = 0.1, | |
maximum = 1, | |
step = 0.1, | |
value = 0.7, | |
interactive = True | |
) | |
with gr.Row(): | |
mdxnet_single_stem = gr.Textbox( | |
label = i18n("Output only single stem"), | |
placeholder = i18n("Write the stem you want, check the stems of each model on Leaderboard. e.g. Instrumental"), | |
interactive = True | |
) | |
with gr.Row(): | |
mdxnet_audio = gr.Audio( | |
label = i18n("Input audio"), | |
type = "filepath", | |
interactive = True | |
) | |
with gr.Accordion(i18n("Separation by link"), open = False): | |
with gr.Row(): | |
mdxnet_link = gr.Textbox( | |
label = i18n("Link"), | |
placeholder = i18n("Paste the link here"), | |
interactive = True | |
) | |
with gr.Row(): | |
gr.Markdown(i18n("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)")) | |
with gr.Row(): | |
mdxnet_download_button = gr.Button( | |
i18n("Download!"), | |
variant = "primary" | |
) | |
mdxnet_download_button.click(download_audio, [mdxnet_link], [mdxnet_audio]) | |
with gr.Accordion(i18n("Batch separation"), open = False): | |
with gr.Row(): | |
mdxnet_input_path = gr.Textbox( | |
label = i18n("Input path"), | |
placeholder = i18n("Place the input path here"), | |
interactive = True | |
) | |
mdxnet_output_path = gr.Textbox( | |
label = i18n("Output path"), | |
placeholder = i18n("Place the output path here"), | |
interactive = True | |
) | |
with gr.Row(): | |
mdxnet_bath_button = gr.Button(i18n("Separate!"), variant = "primary") | |
with gr.Row(): | |
mdxnet_info = gr.Textbox( | |
label = i18n("Output information"), | |
interactive = False | |
) | |
mdxnet_bath_button.click(mdxnet_batch, [mdxnet_input_path, mdxnet_output_path, mdxnet_model, mdxnet_output_format, mdxnet_hop_length, mdxnet_segment_size, mdxnet_denoise, mdxnet_overlap, mdxnet_batch_size, mdxnet_normalization_threshold, mdxnet_amplification_threshold, mdxnet_single_stem], [mdxnet_info]) | |
with gr.Row(): | |
mdxnet_button = gr.Button(i18n("Separate!"), variant = "primary") | |
with gr.Row(): | |
mdxnet_stem1 = gr.Audio( | |
show_download_button = True, | |
interactive = False, | |
label = i18n("Stem 1"), | |
type = "filepath" | |
) | |
mdxnet_stem2 = gr.Audio( | |
show_download_button = True, | |
interactive = False, | |
label = i18n("Stem 2"), | |
type = "filepath" | |
) | |
mdxnet_button.click(mdxnet_separator, [mdxnet_audio, mdxnet_model, mdxnet_output_format, mdxnet_hop_length, mdxnet_segment_size, mdxnet_denoise, mdxnet_overlap, mdxnet_batch_size, mdxnet_normalization_threshold, mdxnet_amplification_threshold, mdxnet_single_stem], [mdxnet_stem1, mdxnet_stem2]) | |
with gr.TabItem("VR ARCH"): | |
with gr.Row(): | |
vrarch_model = gr.Dropdown( | |
label = i18n("Select the model"), | |
choices = vrarch_models, | |
value = lambda : None, | |
interactive = True | |
) | |
vrarch_output_format = gr.Dropdown( | |
label = i18n("Select the output format"), | |
choices = output_format, | |
value = lambda : None, | |
interactive = True | |
) | |
with gr.Accordion(i18n("Advanced settings"), open = False): | |
with gr.Group(): | |
with gr.Row(): | |
vrarch_window_size = gr.Slider( | |
label = i18n("Window size"), | |
info = i18n("Balance quality and speed. 1024 = fast but lower, 320 = slower but better quality"), | |
minimum=320, | |
maximum=1024, | |
step=32, | |
value = 512, | |
interactive = True | |
) | |
vrarch_agression = gr.Slider( | |
minimum = 1, | |
maximum = 50, | |
step = 1, | |
label = i18n("Agression"), | |
info = i18n("Intensity of primary stem extraction"), | |
value = 5, | |
interactive = True | |
) | |
vrarch_tta = gr.Checkbox( | |
label = i18n("TTA"), | |
info = i18n("Enable Test-Time-Augmentation; slow but improves quality"), | |
value = True, | |
visible = True, | |
interactive = True | |
) | |
with gr.Row(): | |
vrarch_post_process = gr.Checkbox( | |
label = i18n("Post process"), | |
info = i18n("Identify leftover artifacts within vocal output; may improve separation for some songs"), | |
value = False, | |
visible = True, | |
interactive = True | |
) | |
vrarch_post_process_threshold = gr.Slider( | |
label = i18n("Post process threshold"), | |
info = i18n("Threshold for post-processing"), | |
minimum = 0.1, | |
maximum = 0.3, | |
step = 0.1, | |
value = 0.2, | |
interactive = True | |
) | |
with gr.Row(): | |
vrarch_high_end_process = gr.Checkbox( | |
label = i18n("High end process"), | |
info = i18n("Mirror the missing frequency range of the output"), | |
value = False, | |
visible = True, | |
interactive = True, | |
) | |
vrarch_batch_size = gr.Slider( | |
label = i18n("Batch size"), | |
info = i18n("Larger consumes more RAM but may process slightly faster"), | |
minimum = 1, | |
maximum = 16, | |
step = 1, | |
value = 1, | |
interactive = True | |
) | |
with gr.Row(): | |
vrarch_normalization_threshold = gr.Slider( | |
label = i18n("Normalization threshold"), | |
info = i18n("The threshold for audio normalization"), | |
minimum = 0.1, | |
maximum = 1, | |
step = 0.1, | |
value = 0.9, | |
interactive = True | |
) | |
vrarch_amplification_threshold = gr.Slider( | |
label = i18n("Amplification threshold"), | |
info = i18n("The threshold for audio amplification"), | |
minimum = 0.1, | |
maximum = 1, | |
step = 0.1, | |
value = 0.7, | |
interactive = True | |
) | |
with gr.Row(): | |
vrarch_single_stem = gr.Textbox( | |
label = i18n("Output only single stem"), | |
placeholder = i18n("Write the stem you want, check the stems of each model on Leaderboard. e.g. Instrumental"), | |
interactive = True | |
) | |
with gr.Row(): | |
vrarch_audio = gr.Audio( | |
label = i18n("Input audio"), | |
type = "filepath", | |
interactive = True | |
) | |
with gr.Accordion(i18n("Separation by link"), open = False): | |
with gr.Row(): | |
vrarch_link = gr.Textbox( | |
label = i18n("Link"), | |
placeholder = i18n("Paste the link here"), | |
interactive = True | |
) | |
with gr.Row(): | |
gr.Markdown(i18n("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)")) | |
with gr.Row(): | |
vrarch_download_button = gr.Button( | |
i18n("Download!"), | |
variant = "primary" | |
) | |
vrarch_download_button.click(download_audio, [vrarch_link], [vrarch_audio]) | |
with gr.Accordion(i18n("Batch separation"), open = False): | |
with gr.Row(): | |
vrarch_input_path = gr.Textbox( | |
label = i18n("Input path"), | |
placeholder = i18n("Place the input path here"), | |
interactive = True | |
) | |
vrarch_output_path = gr.Textbox( | |
label = i18n("Output path"), | |
placeholder = i18n("Place the output path here"), | |
interactive = True | |
) | |
with gr.Row(): | |
vrarch_bath_button = gr.Button(i18n("Separate!"), variant = "primary") | |
with gr.Row(): | |
vrarch_info = gr.Textbox( | |
label = i18n("Output information"), | |
interactive = False | |
) | |
vrarch_bath_button.click(vrarch_batch, [vrarch_input_path, vrarch_output_path, vrarch_model, vrarch_output_format, vrarch_window_size, vrarch_agression, vrarch_tta, vrarch_post_process, vrarch_post_process_threshold, vrarch_high_end_process, vrarch_batch_size, vrarch_normalization_threshold, vrarch_amplification_threshold, vrarch_single_stem], [vrarch_info]) | |
with gr.Row(): | |
vrarch_button = gr.Button(i18n("Separate!"), variant = "primary") | |
with gr.Row(): | |
vrarch_stem1 = gr.Audio( | |
show_download_button = True, | |
interactive = False, | |
type = "filepath", | |
label = i18n("Stem 1") | |
) | |
vrarch_stem2 = gr.Audio( | |
show_download_button = True, | |
interactive = False, | |
type = "filepath", | |
label = i18n("Stem 2") | |
) | |
vrarch_button.click(vrarch_separator, [vrarch_audio, vrarch_model, vrarch_output_format, vrarch_window_size, vrarch_agression, vrarch_tta, vrarch_post_process, vrarch_post_process_threshold, vrarch_high_end_process, vrarch_batch_size, vrarch_normalization_threshold, vrarch_amplification_threshold, vrarch_single_stem], [vrarch_stem1, vrarch_stem2]) | |
with gr.TabItem("Demucs"): | |
with gr.Row(): | |
demucs_model = gr.Dropdown( | |
label = i18n("Select the model"), | |
choices = demucs_models, | |
value = lambda : None, | |
interactive = True | |
) | |
demucs_output_format = gr.Dropdown( | |
label = i18n("Select the output format"), | |
choices = output_format, | |
value = lambda : None, | |
interactive = True | |
) | |
with gr.Accordion(i18n("Advanced settings"), open = False): | |
with gr.Group(): | |
with gr.Row(): | |
demucs_shifts = gr.Slider( | |
label = i18n("Shifts"), | |
info = i18n("Number of predictions with random shifts, higher = slower but better quality"), | |
minimum = 1, | |
maximum = 20, | |
step = 1, | |
value = 2, | |
interactive = True | |
) | |
demucs_segment_size = gr.Slider( | |
label = i18n("Segment size"), | |
info = i18n("Size of segments into which the audio is split. Higher = slower but better quality"), | |
minimum = 1, | |
maximum = 100, | |
step = 1, | |
value = 40, | |
interactive = True | |
) | |
demucs_segments_enabled = gr.Checkbox( | |
label = i18n("Segment-wise processing"), | |
info = i18n("Enable segment-wise processing"), | |
value = True, | |
interactive = True | |
) | |
with gr.Row(): | |
demucs_overlap = gr.Slider( | |
label = i18n("Overlap"), | |
info = i18n("Overlap between prediction windows. Higher = slower but better quality"), | |
minimum=0.001, | |
maximum=0.999, | |
step=0.001, | |
value = 0.25, | |
interactive = True | |
) | |
demucs_batch_size = gr.Slider( | |
label = i18n("Batch size"), | |
info = i18n("Larger consumes more RAM but may process slightly faster"), | |
minimum = 1, | |
maximum = 16, | |
step = 1, | |
value = 1, | |
interactive = True | |
) | |
with gr.Row(): | |
demucs_normalization_threshold = gr.Slider( | |
label = i18n("Normalization threshold"), | |
info = i18n("The threshold for audio normalization"), | |
minimum = 0.1, | |
maximum = 1, | |
step = 0.1, | |
value = 0.9, | |
interactive = True | |
) | |
demucs_amplification_threshold = gr.Slider( | |
label = i18n("Amplification threshold"), | |
info = i18n("The threshold for audio amplification"), | |
minimum = 0.1, | |
maximum = 1, | |
step = 0.1, | |
value = 0.7, | |
interactive = True | |
) | |
with gr.Row(): | |
demucs_audio = gr.Audio( | |
label = i18n("Input audio"), | |
type = "filepath", | |
interactive = True | |
) | |
with gr.Accordion(i18n("Separation by link"), open = False): | |
with gr.Row(): | |
demucs_link = gr.Textbox( | |
label = i18n("Link"), | |
placeholder = i18n("Paste the link here"), | |
interactive = True | |
) | |
with gr.Row(): | |
gr.Markdown(i18n("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)")) | |
with gr.Row(): | |
demucs_download_button = gr.Button( | |
i18n("Download!"), | |
variant = "primary" | |
) | |
demucs_download_button.click(download_audio, [demucs_link], [demucs_audio]) | |
with gr.Accordion(i18n("Batch separation"), open = False): | |
with gr.Row(): | |
demucs_input_path = gr.Textbox( | |
label = i18n("Input path"), | |
placeholder = i18n("Place the input path here"), | |
interactive = True | |
) | |
demucs_output_path = gr.Textbox( | |
label = i18n("Output path"), | |
placeholder = i18n("Place the output path here"), | |
interactive = True | |
) | |
with gr.Row(): | |
demucs_bath_button = gr.Button(i18n("Separate!"), variant = "primary") | |
with gr.Row(): | |
demucs_info = gr.Textbox( | |
label = i18n("Output information"), | |
interactive = False | |
) | |
demucs_bath_button.click(demucs_batch, [demucs_input_path, demucs_output_path, demucs_model, demucs_output_format, demucs_shifts, demucs_segment_size, demucs_segments_enabled, demucs_overlap, demucs_batch_size, demucs_normalization_threshold, demucs_amplification_threshold], [demucs_info]) | |
with gr.Row(): | |
demucs_button = gr.Button(i18n("Separate!"), variant = "primary") | |
with gr.Row(): | |
demucs_stem1 = gr.Audio( | |
show_download_button = True, | |
interactive = False, | |
type = "filepath", | |
label = i18n("Stem 1") | |
) | |
demucs_stem2 = gr.Audio( | |
show_download_button = True, | |
interactive = False, | |
type = "filepath", | |
label = i18n("Stem 2") | |
) | |
with gr.Row(): | |
demucs_stem3 = gr.Audio( | |
show_download_button = True, | |
interactive = False, | |
type = "filepath", | |
label = i18n("Stem 3") | |
) | |
demucs_stem4 = gr.Audio( | |
show_download_button = True, | |
interactive = False, | |
type = "filepath", | |
label = i18n("Stem 4") | |
) | |
with gr.Row(visible=False) as stem6: | |
demucs_stem5 = gr.Audio( | |
show_download_button = True, | |
interactive = False, | |
type = "filepath", | |
label = i18n("Stem 5") | |
) | |
demucs_stem6 = gr.Audio( | |
show_download_button = True, | |
interactive = False, | |
type = "filepath", | |
label = i18n("Stem 6") | |
) | |
demucs_model.change(update_stems, inputs=[demucs_model], outputs=stem6) | |
demucs_button.click(demucs_separator, [demucs_audio, demucs_model, demucs_output_format, demucs_shifts, demucs_segment_size, demucs_segments_enabled, demucs_overlap, demucs_batch_size, demucs_normalization_threshold, demucs_amplification_threshold], [demucs_stem1, demucs_stem2, demucs_stem3, demucs_stem4, demucs_stem5, demucs_stem6]) | |
with gr.TabItem(i18n("Leaderboard")): | |
with gr.Group(): | |
with gr.Row(equal_height=True): | |
list_filter = gr.Dropdown( | |
label = i18n("List filter"), | |
info = i18n("Filter and sort the model list by stem"), | |
choices = ["vocals", "instrumental", "reverb", "echo", "noise", "crowd", "dry", "aspiration", "male", "woodwinds", "kick", "drums", "bass", "guitar", "piano", "other"], | |
value = lambda : None | |
) | |
list_button = gr.Button(i18n("Show list!"), variant = "primary") | |
output_list = gr.HTML(label = i18n("Leaderboard")) | |
list_button.click(leaderboard, inputs=list_filter, outputs=output_list) | |
with gr.TabItem(i18n("Themes")): | |
themes_select = gr.Dropdown( | |
label = i18n("Theme"), | |
info = i18n("Select the theme you want to use. (Requires restarting the App)"), | |
choices = loadThemes.get_list(), | |
value = loadThemes.read_json(), | |
visible = True | |
) | |
dummy_output = gr.Textbox(visible = False) | |
themes_select.change( | |
fn = loadThemes.select_theme, | |
inputs = themes_select, | |
outputs = [dummy_output] | |
) | |
with gr.TabItem(i18n("Credits")): | |
gr.Markdown( | |
""" | |
UVR5 UI created by **[Eddycrack 864](https://github.com/Eddycrack864).** Join **[AI HUB](https://discord.gg/aihub)** community. | |
* python-audio-separator by [beveradb](https://github.com/beveradb). | |
* Special thanks to [Ilaria](https://github.com/TheStingerX) for hosting this space and help. | |
* Thanks to [Mikus](https://github.com/cappuch) for the help with the code. | |
* Thanks to [Nick088](https://huggingface.co/Nick088) for the help to fix roformers. | |
* Thanks to [yt_dlp](https://github.com/yt-dlp/yt-dlp) devs. | |
* Separation by link source code and improvements by [Blane187](https://huggingface.co/Blane187). | |
* Thanks to [ArisDev](https://github.com/aris-py) for porting UVR5 UI to Kaggle and improvements. | |
* Thanks to [Bebra777228](https://github.com/Bebra777228)'s code for guiding me to improve my code. | |
* Thanks to Nick088, MrM0dZ, Ryouko-Yamanda65777, lucinamari, perariroswe and Enes for helping translate UVR5 UI. | |
You can donate to the original UVR5 project here: | |
[!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/uvr5) | |
""" | |
) | |
app.queue() | |
app.launch() |