Spaces:
Sleeping
Sleeping
import csv | |
import os | |
from torchvision import transforms | |
from PIL import Image | |
from torch.utils.data import Dataset | |
class DatasetLoader(Dataset): | |
def __init__(self, csv_path): | |
self.csv_file = csv_path | |
with open(self.csv_file, 'r') as file: | |
self.data = list(csv.reader(file)) | |
self.current_dir = os.path.dirname(os.path.abspath(__file__)) | |
def preprocess_image(self, image_path): | |
""" | |
Preprocess the image: Read the image, apply transformations, and return the transformed image. | |
""" | |
full_path = os.path.join(self.current_dir, 'datasets', image_path) | |
image = Image.open(full_path) | |
image_transform = transforms.Compose([ | |
transforms.Resize((256, 256)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
return image_transform(image) | |
def __getitem__(self, index): | |
""" | |
Return the preprocessed image and its label at the specified index from the dataset. | |
""" | |
image_path, label = self.data[index] | |
image = self.preprocess_image(image_path) | |
return image, int(label) | |
def __len__(self): | |
""" | |
Return the number of items in the dataset. | |
""" | |
return len(self.data) |