Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import torchvision.transforms as transforms | |
import torch.nn.functional as F | |
import torchvision | |
# 加载与训练中使用的相同结构的模型 | |
def load_model(checkpoint_path, num_classes): | |
# 加载预训练的ResNet50模型 | |
try: | |
use_mps = torch.backends.mps.is_available() | |
except AttributeError: | |
use_mps = False | |
if torch.cuda.is_available(): | |
device = "cuda" | |
elif use_mps: | |
device = "mps" | |
else: | |
device = "cpu" | |
model = torchvision.models.resnet50(weights=None) | |
in_features = model.fc.in_features | |
model.fc = torch.nn.Linear(in_features, num_classes) | |
model.load_state_dict(torch.load(checkpoint_path, map_location=device)) | |
model.eval() # Set model to evaluation mode | |
return model | |
# 加载图像并执行必要的转换的函数 | |
def process_image(image, image_size): | |
# Define the same transforms as used during training | |
preprocessing = transforms.Compose([ | |
transforms.Resize((image_size, image_size)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
image = preprocessing(image).unsqueeze(0) | |
return image | |
# 预测图像类别并返回概率的函数 | |
def predict(image): | |
classes = {'0': 'cat', '1': 'dog'} # Update or extend this dictionary based on your actual classes | |
image = process_image(image, 256) # Using the image size from training | |
with torch.no_grad(): | |
outputs = model(image) | |
probabilities = F.softmax(outputs, dim=1).squeeze() # Apply softmax to get probabilities | |
# Mapping class labels to probabilities | |
class_probabilities = {classes[str(i)]: float(prob) for i, prob in enumerate(probabilities)} | |
return class_probabilities | |
# 定义到您的模型权重的路径 | |
checkpoint_path = 'checkpoint/latest_checkpoint.pth' | |
num_classes = 2 | |
model = load_model(checkpoint_path, num_classes) | |
# 定义Gradio Interface | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Label(num_top_classes=num_classes), | |
title="Cat vs Dog Classifier", | |
examples=["test_images/test_cat.jpg", "test_images/test_dog.jpg"] | |
) | |
if __name__ == "__main__": | |
iface.launch() |