TheEeeeLin's picture
Upload 25 files
b83973e
import gradio as gr
import torch
import torchvision.transforms as transforms
import torch.nn.functional as F
import torchvision
# 加载与训练中使用的相同结构的模型
def load_model(checkpoint_path, num_classes):
# 加载预训练的ResNet50模型
try:
use_mps = torch.backends.mps.is_available()
except AttributeError:
use_mps = False
if torch.cuda.is_available():
device = "cuda"
elif use_mps:
device = "mps"
else:
device = "cpu"
model = torchvision.models.resnet50(weights=None)
in_features = model.fc.in_features
model.fc = torch.nn.Linear(in_features, num_classes)
model.load_state_dict(torch.load(checkpoint_path, map_location=device))
model.eval() # Set model to evaluation mode
return model
# 加载图像并执行必要的转换的函数
def process_image(image, image_size):
# Define the same transforms as used during training
preprocessing = transforms.Compose([
transforms.Resize((image_size, image_size)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
image = preprocessing(image).unsqueeze(0)
return image
# 预测图像类别并返回概率的函数
def predict(image):
classes = {'0': 'cat', '1': 'dog'} # Update or extend this dictionary based on your actual classes
image = process_image(image, 256) # Using the image size from training
with torch.no_grad():
outputs = model(image)
probabilities = F.softmax(outputs, dim=1).squeeze() # Apply softmax to get probabilities
# Mapping class labels to probabilities
class_probabilities = {classes[str(i)]: float(prob) for i, prob in enumerate(probabilities)}
return class_probabilities
# 定义到您的模型权重的路径
checkpoint_path = 'checkpoint/latest_checkpoint.pth'
num_classes = 2
model = load_model(checkpoint_path, num_classes)
# 定义Gradio Interface
iface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=num_classes),
title="Cat vs Dog Classifier",
examples=["test_images/test_cat.jpg", "test_images/test_dog.jpg"]
)
if __name__ == "__main__":
iface.launch()