|
import cv2 |
|
import einops |
|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
|
|
from pytorch_lightning import seed_everything |
|
from util import resize_image, HWC3, apply_canny |
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
from annotator.openpose import apply_openpose |
|
from cldm.model import create_model, load_state_dict |
|
from huggingface_hub import hf_hub_url, cached_download |
|
|
|
|
|
REPO_ID = "lllyasviel/ControlNet" |
|
scribble_checkpoint = "models/control_sd15_scribble.pth" |
|
scribble_model = create_model('./models/cldm_v15.yaml').cpu() |
|
scribble_model.load_state_dict(load_state_dict(cached_download( |
|
hf_hub_url(REPO_ID, scribble_checkpoint) |
|
), location='cpu')) |
|
scribble_model = scribble_model.cuda() |
|
ddim_sampler_scribble = DDIMSampler(scribble_model) |
|
save_memory = False |
|
|
|
def process(input_image, prompt, input_control, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold): |
|
|
|
|
|
if input_control == "Scribble": |
|
return process_scribble(input_image, prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta) |
|
|
|
def process_scribble(input_image, prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta): |
|
|
|
with torch.no_grad(): |
|
img = resize_image(HWC3(input_image), image_resolution) |
|
H, W, C = img.shape |
|
|
|
detected_map = np.zeros_like(img, dtype=np.uint8) |
|
detected_map[np.min(img, axis=2) < 127] = 255 |
|
|
|
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 |
|
control = torch.stack([control for _ in range(num_samples)], dim=0) |
|
control = einops.rearrange(control, 'b h w c -> b c h w').clone() |
|
|
|
seed_everything(seed) |
|
|
|
if save_memory: |
|
scribble_model.low_vram_shift(is_diffusing=False) |
|
|
|
cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]} |
|
un_cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([n_prompt] * num_samples)]} |
|
shape = (4, H // 8, W // 8) |
|
|
|
if save_memory: |
|
scribble_model.low_vram_shift(is_diffusing=False) |
|
|
|
samples, intermediates = ddim_sampler_scribble.sample(ddim_steps, num_samples, |
|
shape, cond, verbose=False, eta=eta, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=un_cond) |
|
|
|
if save_memory: |
|
scribble_model.low_vram_shift(is_diffusing=False) |
|
|
|
x_samples = scribble_model.decode_first_stage(samples) |
|
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8) |
|
|
|
results = [x_samples[i] for i in range(num_samples)] |
|
return [255 - detected_map] + results |
|
|
|
|
|
def create_canvas(w, h): |
|
new_control_options = ["Interactive Scribble"] |
|
return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255 |
|
|
|
|
|
block = gr.Blocks().queue() |
|
control_task_list = [ |
|
"Scribble" |
|
] |
|
|
|
a_prompt = 'best quality, extremely detailed, architecture render, photorealistic, hyper realistic, surreal, dali, 3d rendering, render, 8k, 16k, extremely detailed, unreal engine, octane, maya' |
|
n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, number, text, watermark, fewer digits, cropped, worst quality, low quality' |
|
|
|
with block: |
|
gr.Markdown("## ControlNet - Architectural Sketch to Render Image") |
|
gr.HTML(''' |
|
<p style="margin-bottom: 10px; font-size: 94%"> |
|
Demo for ControlNet, Optimized for architectural sketch, based on <a href="https://github.com/lllyasviel/ControlNet" style="text-decoration: underline;" target="_blank"> lllyasviel ControlNet </a> implementation. |
|
</p> |
|
''') |
|
gr.HTML(''' |
|
<p style="margin-bottom: 8px; font-size: 94%"> |
|
HF Space created by Thaweewat Rugsujarit, If you have any suggestions or feedback, please feel free to contact me via <a href="https://www.linkedin.com/in/thaweewat-rugsujarit/" style="text-decoration: underline;" target="_blank"> Linkedin </a>. |
|
</p> |
|
''') |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(source='upload', type="numpy") |
|
input_control = gr.Dropdown(control_task_list, value="Scribble", label="Task") |
|
prompt = gr.Textbox(label="Architectural Style") |
|
run_button = gr.Button(label="Run") |
|
|
|
with gr.Accordion("Advanced options", open=False): |
|
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) |
|
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256) |
|
low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1) |
|
high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1) |
|
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1) |
|
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True) |
|
eta = gr.Slider(label="eta (DDIM)", minimum=0.0,maximum =1.0, value=0.0, step=0.1) |
|
|
|
with gr.Column(): |
|
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto') |
|
ips = [input_image, prompt, input_control, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold] |
|
run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) |
|
gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=Thaweewat.ControlNet-Architecture)") |
|
|
|
block.launch(debug = True) |