Spaces:
Running
Running
TeacherPuffy
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -55,22 +55,22 @@ def segment_text(file_path):
|
|
55 |
logger.info(f"Segmented text into {len(chunks)} chunks.")
|
56 |
return chunks
|
57 |
|
58 |
-
# Function to process the text file and make
|
59 |
def process_text(file, prompt):
|
60 |
try:
|
61 |
logger.info("Starting text processing...")
|
62 |
|
63 |
# Segment the text file into chunks
|
64 |
-
|
|
|
65 |
|
66 |
-
# Perform
|
67 |
results = []
|
68 |
for idx, chunk in enumerate(chunks):
|
69 |
logger.info(f"Processing chunk {idx + 1}/{len(chunks)}")
|
70 |
try:
|
71 |
-
|
72 |
-
|
73 |
-
results.extend([result1, result2])
|
74 |
logger.info(f"Chunk {idx + 1} processed successfully.")
|
75 |
except Exception as e:
|
76 |
logger.error(f"Failed to process chunk {idx + 1}: {e}")
|
@@ -87,7 +87,9 @@ def process_text(file, prompt):
|
|
87 |
# Upload to Hugging Face dataset
|
88 |
try:
|
89 |
logger.info("Uploading results to Hugging Face dataset...")
|
90 |
-
hf_api = HfApi(token=os.environ
|
|
|
|
|
91 |
dataset = Dataset.from_dict({"text": results})
|
92 |
dataset.push_to_hub("TeacherPuffy/book") # Updated dataset name
|
93 |
logger.info("Results uploaded to Hugging Face dataset successfully.")
|
@@ -115,7 +117,7 @@ def process_text(file, prompt):
|
|
115 |
|
116 |
# Gradio interface
|
117 |
with gr.Blocks() as demo:
|
118 |
-
gr.Markdown("## Text File Processor with
|
119 |
with gr.Row():
|
120 |
file_input = gr.File(label="Upload Text File")
|
121 |
prompt_input = gr.Textbox(label="Enter Prompt")
|
|
|
55 |
logger.info(f"Segmented text into {len(chunks)} chunks.")
|
56 |
return chunks
|
57 |
|
58 |
+
# Function to process the text file and make API calls
|
59 |
def process_text(file, prompt):
|
60 |
try:
|
61 |
logger.info("Starting text processing...")
|
62 |
|
63 |
# Segment the text file into chunks
|
64 |
+
file_path = file.name if hasattr(file, "name") else file
|
65 |
+
chunks = segment_text(file_path)
|
66 |
|
67 |
+
# Perform API calls for each chunk
|
68 |
results = []
|
69 |
for idx, chunk in enumerate(chunks):
|
70 |
logger.info(f"Processing chunk {idx + 1}/{len(chunks)}")
|
71 |
try:
|
72 |
+
result = call_api(f"{prompt}\n\n{chunk}")
|
73 |
+
results.append(result)
|
|
|
74 |
logger.info(f"Chunk {idx + 1} processed successfully.")
|
75 |
except Exception as e:
|
76 |
logger.error(f"Failed to process chunk {idx + 1}: {e}")
|
|
|
87 |
# Upload to Hugging Face dataset
|
88 |
try:
|
89 |
logger.info("Uploading results to Hugging Face dataset...")
|
90 |
+
hf_api = HfApi(token=os.environ.get("HUGGINGFACE_TOKEN"))
|
91 |
+
if not hf_api.token:
|
92 |
+
raise ValueError("Hugging Face token not found in environment variables.")
|
93 |
dataset = Dataset.from_dict({"text": results})
|
94 |
dataset.push_to_hub("TeacherPuffy/book") # Updated dataset name
|
95 |
logger.info("Results uploaded to Hugging Face dataset successfully.")
|
|
|
117 |
|
118 |
# Gradio interface
|
119 |
with gr.Blocks() as demo:
|
120 |
+
gr.Markdown("## Text File Processor with API Calls")
|
121 |
with gr.Row():
|
122 |
file_input = gr.File(label="Upload Text File")
|
123 |
prompt_input = gr.Textbox(label="Enter Prompt")
|