CreateBook2 / app.py
TeacherPuffy's picture
Update app.py
6f874f7 verified
raw
history blame
5.93 kB
import gradio as gr
from gradio_client import Client
import os
import zipfile
from datasets import Dataset
from huggingface_hub import HfApi
import logging
import time # Import time module for adding delays
# Set up logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# Initialize the Gradio client
client = Client("MiniMaxAI/MiniMax-Text-01")
# Function to call the API and get the result
def call_api(prompt):
try:
logger.info(f"Calling API with prompt: {prompt[:100]}...") # Log the first 100 chars of the prompt
result = client.predict(
message=prompt,
max_tokens=12800,
temperature=0.1,
top_p=0.9,
api_name="/chat"
)
logger.info("API call successful.")
return result
except Exception as e:
logger.error(f"API call failed: {e}")
raise gr.Error(f"API call failed: {str(e)}")
# Function to segment the text file into chunks of 3000 words
def segment_text(file_path):
try:
logger.info(f"Reading file: {file_path}")
# Try reading with UTF-8 encoding first
with open(file_path, "r", encoding="utf-8") as f:
text = f.read()
logger.info("File read successfully with UTF-8 encoding.")
except UnicodeDecodeError:
logger.warning("UTF-8 encoding failed. Trying latin-1 encoding.")
# Fallback to latin-1 encoding if UTF-8 fails
with open(file_path, "r", encoding="latin-1") as f:
text = f.read()
logger.info("File read successfully with latin-1 encoding.")
except Exception as e:
logger.error(f"Failed to read file: {e}")
raise gr.Error(f"Failed to read file: {str(e)}")
# Split the text into chunks of 3000 words
words = text.split()
chunks = [" ".join(words[i:i + 3000]) for i in range(0, len(words), 3000)]
logger.info(f"Segmented text into {len(chunks)} chunks.")
return chunks
# Function to process the text file and make API calls with rate limiting
def process_text(file, prompt):
try:
logger.info("Starting text processing...")
# Segment the text file into chunks
file_path = file.name if hasattr(file, "name") else file
chunks = segment_text(file_path)
# Initialize Hugging Face API
hf_api = HfApi(token=os.environ.get("HUGGINGFACE_TOKEN"))
if not hf_api.token:
raise ValueError("Hugging Face token not found in environment variables.")
# Process each chunk with a 20-second delay between API calls
results = []
for idx, chunk in enumerate(chunks):
logger.info(f"Processing chunk {idx + 1}/{len(chunks)}")
try:
# Call the API
result = call_api(f"{prompt}\n\n{chunk}")
results.append(result)
logger.info(f"Chunk {idx + 1} processed successfully.")
# Save the result to a file
os.makedirs("outputs", exist_ok=True)
output_file = f"outputs/output_{idx}.txt"
with open(output_file, "w", encoding="utf-8") as f:
f.write(result)
logger.info(f"Saved result to {output_file}")
# Upload the chunk to Hugging Face
try:
logger.info(f"Uploading chunk {idx + 1} to Hugging Face...")
dataset = Dataset.from_dict({"text": [result]})
dataset.push_to_hub("TeacherPuffy/book") # Updated dataset name
logger.info(f"Chunk {idx + 1} uploaded to Hugging Face successfully.")
except Exception as e:
logger.error(f"Failed to upload chunk {idx + 1} to Hugging Face: {e}")
raise gr.Error(f"Failed to upload chunk {idx + 1} to Hugging Face: {str(e)}")
# Wait 20 seconds before the next API call
if idx < len(chunks) - 1: # No need to wait after the last chunk
logger.info("Waiting 20 seconds before the next API call...")
time.sleep(20)
except Exception as e:
logger.error(f"Failed to process chunk {idx + 1}: {e}")
raise gr.Error(f"Failed to process chunk {idx + 1}: {str(e)}")
# Create a ZIP file of all outputs
try:
logger.info("Creating ZIP file...")
with zipfile.ZipFile("outputs.zip", "w") as zipf:
for root, dirs, files in os.walk("outputs"):
for file in files:
zipf.write(os.path.join(root, file), file)
logger.info("ZIP file created successfully.")
except Exception as e:
logger.error(f"Failed to create ZIP file: {e}")
raise gr.Error(f"Failed to create ZIP file: {str(e)}")
return "outputs.zip", "All chunks processed and uploaded to Hugging Face. ZIP file created."
except Exception as e:
logger.error(f"An error occurred during processing: {e}")
raise gr.Error(f"An error occurred: {str(e)}")
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Text File Processor with Rate-Limited API Calls")
with gr.Row():
file_input = gr.File(label="Upload Text File")
prompt_input = gr.Textbox(label="Enter Prompt")
with gr.Row():
output_zip = gr.File(label="Download ZIP File")
output_message = gr.Textbox(label="Status Message")
submit_button = gr.Button("Submit")
submit_button.click(
process_text,
inputs=[file_input, prompt_input],
outputs=[output_zip, output_message]
)
# Launch the Gradio app with a public link
demo.launch(share=True)