Spaces:
Running
Running
import gradio as gr | |
from gradio_client import Client | |
import os | |
import zipfile | |
from datasets import Dataset | |
from huggingface_hub import HfApi | |
# Initialize the Gradio client | |
client = Client("MiniMaxAI/MiniMax-Text-01") | |
# Function to call the API and get the result | |
def call_api(prompt): | |
result = client.predict( | |
message=prompt, | |
max_tokens=12800, | |
temperature=0.1, | |
top_p=0.9, | |
api_name="/chat" | |
) | |
return result | |
# Function to segment the text file into chunks of 3000 words | |
def segment_text(file_path): | |
try: | |
# Try reading with UTF-8 encoding first | |
with open(file_path, "r", encoding="utf-8") as f: | |
text = f.read() | |
except UnicodeDecodeError: | |
# Fallback to latin-1 encoding if UTF-8 fails | |
with open(file_path, "r", encoding="latin-1") as f: | |
text = f.read() | |
# Split the text into chunks of 3000 words | |
words = text.split() | |
chunks = [" ".join(words[i:i + 3000]) for i in range(0, len(words), 3000)] | |
return chunks | |
# Function to process the text file and make parallel API calls | |
def process_text(file, prompt): | |
# Segment the text file into chunks | |
chunks = segment_text(file.name) | |
# Perform two parallel API calls for each chunk | |
results = [] | |
for chunk in chunks: | |
result1 = call_api(f"{prompt}\n\n{chunk}") | |
result2 = call_api(f"{prompt}\n\n{chunk}") | |
results.extend([result1, result2]) | |
# Save results as individual text files | |
os.makedirs("outputs", exist_ok=True) | |
for idx, result in enumerate(results): | |
with open(f"outputs/output_{idx}.txt", "w", encoding="utf-8") as f: | |
f.write(result) | |
# Upload to Hugging Face dataset | |
hf_api = HfApi(token=os.environ["HUGGINGFACE_TOKEN"]) | |
dataset = Dataset.from_dict({"text": results}) | |
dataset.push_to_hub("your_huggingface_username/your_dataset_name") | |
# Create a ZIP file | |
with zipfile.ZipFile("outputs.zip", "w") as zipf: | |
for root, dirs, files in os.walk("outputs"): | |
for file in files: | |
zipf.write(os.path.join(root, file), file) | |
return "outputs.zip", "Results uploaded to Hugging Face dataset and ZIP file created." | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## Text File Processor with Parallel API Calls") | |
with gr.Row(): | |
file_input = gr.File(label="Upload Text File") | |
prompt_input = gr.Textbox(label="Enter Prompt") | |
with gr.Row(): | |
output_zip = gr.File(label="Download ZIP File") | |
output_message = gr.Textbox(label="Status Message") | |
submit_button = gr.Button("Submit") | |
submit_button.click( | |
process_text, | |
inputs=[file_input, prompt_input], | |
outputs=[output_zip, output_message] | |
) | |
# Launch the Gradio app with a public link | |
demo.launch(share=True) |