o1 / app.py
yuntian-deng's picture
Update app.py
a3f51b5 verified
import gradio as gr
import os
import sys
import json
import copy
import requests
import random
import timeout_decorator
from tenacity import retry, wait_fixed, stop_after_attempt
MODEL = "o1-preview"
API_URL = os.getenv("API_URL")
DISABLED = os.getenv("DISABLED") == 'True'
OPENAI_API_KEYS = os.getenv("OPENAI_API_KEYS").split(',')
print (API_URL)
print (OPENAI_API_KEYS)
NUM_THREADS = int(os.getenv("NUM_THREADS"))
print (NUM_THREADS)
#@timeout_decorator.timeout(120)
@retry(stop=stop_after_attempt(5), wait=wait_fixed(2))
def call_openai_api(payload, headers):
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
response.raise_for_status()
return response
def exception_handler(exception_type, exception, traceback):
print("%s: %s" % (exception_type.__name__, exception))
sys.excepthook = exception_handler
sys.tracebacklimit = 0
def predict(inputs, top_p, temperature, chat_counter, chatbot, history, request:gr.Request):
orig_history = copy.deepcopy(history)
orig_chat_counter = chat_counter
payload = {
"model": MODEL,
"messages": [{"role": "user", "content": f"{inputs}"}],
"temperature" : 1.0,
"top_p":1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
OPENAI_API_KEY = random.choice(OPENAI_API_KEYS)
print (OPENAI_API_KEY)
headers_dict = {key.decode('utf-8'): value.decode('utf-8') for key, value in request.headers.raw}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENAI_API_KEY}",
"Headers": f"{headers_dict}"
}
# print(f"chat_counter - {chat_counter}")
if chat_counter != 0 :
messages = []
for i, data in enumerate(history):
if i % 2 == 0:
role = 'user'
else:
role = 'assistant'
message = {}
message["role"] = role
message["content"] = data
messages.append(message)
message = {}
message["role"] = "user"
message["content"] = inputs
messages.append(message)
payload = {
"model": MODEL,
"messages": messages,
"temperature" : temperature,
"top_p": top_p,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
chat_counter += 1
history.append(inputs)
token_counter = 0
partial_words = ""
counter = 0
try:
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
response = call_openai_api(payload, headers) #requests.post(API_URL, headers=headers, json=payload, stream=True)
response_code = f"{response}"
#if response_code.strip() != "<Response [200]>":
# #print(f"response code - {response}")
# raise Exception(f"Sorry, hitting rate limit. Please try again later. {response}")
for chunk in response.iter_lines():
#print (chunk)
#sys.stdout.flush()
#Skipping first chunk
if counter == 0:
counter += 1
continue
#counter+=1
# check whether each line is non-empty
if chunk.decode() :
chunk = chunk.decode()
# decode each line as response data is in bytes
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
token_counter += 1
yield [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ], history, chat_counter, response, gr.update(interactive=False), gr.update(interactive=False) # resembles {chatbot: chat, state: history}
except Exception as e:
print (f'error found: {e}')
return [(orig_history[i], orig_history[i + 1]) for i in range(0, len(orig_history) - 1, 2) ], orig_history, orig_chat_counter, 'Error! Please try again', gr.update(interactive=True), gr.update(interactive=True)
yield [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ], history, chat_counter, response, gr.update(interactive=True), gr.update(interactive=True)
print(json.dumps({"chat_counter": chat_counter, "payload": payload, "partial_words": partial_words, "token_counter": token_counter, "counter": counter}))
def reset_textbox():
return gr.update(value='', interactive=False), gr.update(interactive=False)
title = """<h1 align="center">OpenAI-O1-Preview: Research Preview (Short-Term Availability)</h1>"""
if DISABLED:
title = """<h1 align="center" style="color:red">This app has reached OpenAI's usage limit. Please check back tomorrow.</h1>"""
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```
In this app, you can explore the outputs of a gpt-4 turbo LLM.
"""
theme = gr.themes.Default(primary_hue="green")
with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;}
#chatbot {height: 520px; overflow: auto;}""",
theme=theme) as demo:
gr.HTML(title)
gr.HTML("""<h3 align="center" style="color: red;">If this app doesn't respond, consider trying our O1-mini app:<br/><a href="https://huggingface.co/spaces/yuntian-deng/o1mini">https://huggingface.co/spaces/yuntian-deng/o1mini</a></h3>""")
#gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/ChatGPT4?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''')
with gr.Column(elem_id = "col_container", visible=False) as main_block:
#GPT4 API Key is provided by Huggingface
#openai_api_key = gr.Textbox(type='password', label="Enter only your GPT4 OpenAI API key here")
chatbot = gr.Chatbot(elem_id='chatbot') #c
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") #t
state = gr.State([]) #s
with gr.Row():
with gr.Column(scale=7):
b1 = gr.Button(visible=not DISABLED) #.style(full_width=True)
with gr.Column(scale=3):
server_status_code = gr.Textbox(label="Status code from OpenAI server", )
#inputs, top_p, temperature, top_k, repetition_penalty
with gr.Accordion("Parameters", open=False):
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
#top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
#repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
chat_counter = gr.Number(value=0, visible=False, precision=0)
with gr.Column(elem_id = "user_consent_container") as user_consent_block:
# Get user consent
accept_checkbox = gr.Checkbox(visible=False)
js = "(x) => confirm('By clicking \"OK\", I agree that my data may be published or shared.')"
with gr.Accordion("User Consent for Data Collection, Use, and Sharing", open=True):
gr.HTML("""
<div>
<p>By using our app, which is powered by OpenAI's API, you acknowledge and agree to the following terms regarding the data you provide:</p>
<ol>
<li><strong>Collection:</strong> We may collect information, including the inputs you type into our app, the outputs generated by OpenAI's API, and certain technical details about your device and connection (such as browser type, operating system, and IP address) provided by your device's request headers.</li>
<li><strong>Use:</strong> We may use the collected data for research purposes, to improve our services, and to develop new products or services, including commercial applications, and for security purposes, such as protecting against unauthorized access and attacks.</li>
<li><strong>Sharing and Publication:</strong> Your data, including the technical details collected from your device's request headers, may be published, shared with third parties, or used for analysis and reporting purposes.</li>
<li><strong>Data Retention:</strong> We may retain your data, including the technical details collected from your device's request headers, for as long as necessary.</li>
</ol>
<p>By continuing to use our app, you provide your explicit consent to the collection, use, and potential sharing of your data as described above. If you do not agree with our data collection, use, and sharing practices, please do not use our app.</p>
</div>
""")
accept_button = gr.Button("I Agree")
def enable_inputs():
return gr.update(visible=False), gr.update(visible=True)
accept_button.click(None, None, accept_checkbox, js=js, queue=False)
accept_checkbox.change(fn=enable_inputs, inputs=[], outputs=[user_consent_block, main_block], queue=False)
inputs.submit(reset_textbox, [], [inputs, b1], queue=False)
inputs.submit(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code, inputs, b1],) #openai_api_key
b1.click(reset_textbox, [], [inputs, b1], queue=False)
b1.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code, inputs, b1],) #openai_api_key
demo.queue(max_size=10, default_concurrency_limit=NUM_THREADS, api_open=False).launch(share=False)