Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
from PIL import Image | |
import scipy.io.wavfile as wavfile | |
from transformers import pipeline | |
# Set device for processing | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load models | |
caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large", device=device) | |
narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") | |
def generate_audio(text): | |
"""Generate audio narration from text.""" | |
narrated_text = narrator(text) | |
wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0]) | |
return "output.wav" | |
def caption_my_image(pil_image): | |
"""Generate caption for the image and convert it to audio.""" | |
semantics = caption_image(images=pil_image)[0]['generated_text'] | |
return generate_audio(semantics) | |
# Define the Gradio interface | |
demo = gr.Interface( | |
fn=caption_my_image, | |
inputs=[gr.Image(label="Upload Your Image", type="pil")], | |
outputs=[gr.Audio(label="Generated Audio Caption")], | |
title="Image Captioning and Narration", | |
description=( | |
"Upload an image to generate a descriptive caption and listen to its narration.\n" | |
"This app is brought to you by **Taizun**." | |
), | |
theme="compact" # Use a minimalistic theme | |
) | |
# Launch the application | |
demo.launch() | |