yesssssssss commited on
Commit
5faa10b
·
1 Parent(s): 542daa5
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. .gitmodules +0 -0
  3. README.md +5 -6
  4. TabPFN/PrepareDatasets.ipynb +373 -0
  5. TabPFN/README.md +23 -0
  6. TabPFN/SyntheticGPAblation.ipynb +392 -0
  7. TabPFN/TabPFNPredictionOnly.ipynb +253 -0
  8. TabPFN/TabularEvaluationVisualization.ipynb +0 -0
  9. TabPFN/TrainingTuningAndPrediction.ipynb +0 -0
  10. TabPFN/__pycache__/encoders.cpython-39.pyc +0 -0
  11. TabPFN/__pycache__/layer.cpython-39.pyc +0 -0
  12. TabPFN/__pycache__/model_builder.cpython-39.pyc +0 -0
  13. TabPFN/__pycache__/notebook_utils.cpython-39.pyc +0 -0
  14. TabPFN/__pycache__/positional_encodings.cpython-39.pyc +0 -0
  15. TabPFN/__pycache__/train.cpython-39.pyc +0 -0
  16. TabPFN/__pycache__/transformer.cpython-39.pyc +0 -0
  17. TabPFN/__pycache__/utils.cpython-39.pyc +0 -0
  18. TabPFN/datasets/__init__.py +149 -0
  19. TabPFN/datasets/__pycache__/__init__.cpython-39.pyc +0 -0
  20. TabPFN/datasets/utils.py +8 -0
  21. TabPFN/decoders.py +30 -0
  22. TabPFN/differentiable_pfn_evaluation.py +345 -0
  23. TabPFN/encoders.py +225 -0
  24. TabPFN/initializers.py +9 -0
  25. TabPFN/layer.py +125 -0
  26. TabPFN/losses.py +41 -0
  27. TabPFN/model_builder.py +273 -0
  28. TabPFN/models_diff/gp_ablation_model.cpkt +3 -0
  29. TabPFN/models_diff/prior_diff_real_checkpoint_n_8x_lr0.0003_epoch_49.cpkt +3 -0
  30. TabPFN/notebook_utils.py +32 -0
  31. TabPFN/positional_encodings.py +70 -0
  32. TabPFN/prior_tuning_result.pkl +3 -0
  33. TabPFN/priors/__init__.py +4 -0
  34. TabPFN/priors/__pycache__/__init__.cpython-39.pyc +0 -0
  35. TabPFN/priors/__pycache__/differentiable_prior.cpython-39.pyc +0 -0
  36. TabPFN/priors/__pycache__/fast_gp.cpython-39.pyc +0 -0
  37. TabPFN/priors/__pycache__/flexible_categorical.cpython-39.pyc +0 -0
  38. TabPFN/priors/__pycache__/mlp.cpython-39.pyc +0 -0
  39. TabPFN/priors/__pycache__/prior.cpython-39.pyc +0 -0
  40. TabPFN/priors/__pycache__/prior_bag.cpython-39.pyc +0 -0
  41. TabPFN/priors/__pycache__/utils.cpython-39.pyc +0 -0
  42. TabPFN/priors/differentiable_prior.py +293 -0
  43. TabPFN/priors/fast_gp.py +144 -0
  44. TabPFN/priors/flexible_categorical.py +240 -0
  45. TabPFN/priors/mlp.py +173 -0
  46. TabPFN/priors/prior.py +12 -0
  47. TabPFN/priors/prior_bag.py +32 -0
  48. TabPFN/priors/utils.py +163 -0
  49. TabPFN/requirements.txt +15 -0
  50. TabPFN/scripts/__pycache__/tabular_baselines.cpython-39.pyc +0 -0
.gitattributes CHANGED
@@ -29,3 +29,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
32
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
33
+ *.cpkt filter=lfs diff=lfs merge=lfs -text
.gitmodules ADDED
File without changes
README.md CHANGED
@@ -1,13 +1,12 @@
1
  ---
2
- title: TabPFNEvaluation
3
- emoji: 😻
4
- colorFrom: purple
5
- colorTo: purple
6
  sdk: gradio
7
  sdk_version: 3.1.1
8
  app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: TabPFNEvaluationDemo
3
+ emoji: 🏢
4
+ colorFrom: blue
5
+ colorTo: red
6
  sdk: gradio
7
  sdk_version: 3.1.1
8
  app_file: app.py
9
+ pinned: true
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
TabPFN/PrepareDatasets.ipynb ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import numpy as np\n",
10
+ "\n",
11
+ "import openml\n",
12
+ "import pandas as pd"
13
+ ]
14
+ },
15
+ {
16
+ "cell_type": "code",
17
+ "execution_count": 2,
18
+ "metadata": {},
19
+ "outputs": [],
20
+ "source": [
21
+ "from tqdm import tqdm\n",
22
+ "\n",
23
+ "from datasets import load_openml_list, test_dids_classification, valid_large_classification, open_cc_dids, open_cc_valid_dids\n"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": 6,
29
+ "metadata": {},
30
+ "outputs": [
31
+ {
32
+ "name": "stdout",
33
+ "output_type": "stream",
34
+ "text": [
35
+ "The autoreload extension is already loaded. To reload it, use:\n",
36
+ " %reload_ext autoreload\n"
37
+ ]
38
+ }
39
+ ],
40
+ "source": [
41
+ "%load_ext autoreload\n",
42
+ "\n",
43
+ "%autoreload 2"
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "markdown",
48
+ "metadata": {
49
+ "tags": []
50
+ },
51
+ "source": [
52
+ "### Prepare test datasets"
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": 7,
58
+ "metadata": {},
59
+ "outputs": [],
60
+ "source": [
61
+ "renamer = {'name': 'Name', 'NumberOfFeatures': '# Features', 'NumberOfSymbolicFeatures': '# Categorical Features', 'NumberOfInstances': '# Instances', 'NumberOfMissingValues': '# NaNs', 'NumberOfClasses': '# Classes', 'MinorityClassSize': 'Minority Class Size'}\n"
62
+ ]
63
+ },
64
+ {
65
+ "cell_type": "code",
66
+ "execution_count": 8,
67
+ "metadata": {},
68
+ "outputs": [
69
+ {
70
+ "data": {
71
+ "text/plain": [
72
+ "OrderedDict([(99,\n",
73
+ " {'id': 99,\n",
74
+ " 'alias': 'OpenML-CC18',\n",
75
+ " 'main_entity_type': 'task',\n",
76
+ " 'name': 'OpenML-CC18 Curated Classification benchmark',\n",
77
+ " 'status': 'active',\n",
78
+ " 'creation_date': '2019-02-21 18:47:13',\n",
79
+ " 'creator': 1}),\n",
80
+ " (225,\n",
81
+ " {'id': 225,\n",
82
+ " 'alias': 'OpenML-friendly',\n",
83
+ " 'main_entity_type': 'task',\n",
84
+ " 'name': 'OpenML100-friendly',\n",
85
+ " 'status': 'active',\n",
86
+ " 'creation_date': '2019-09-16 19:41:46',\n",
87
+ " 'creator': 1})])"
88
+ ]
89
+ },
90
+ "execution_count": 8,
91
+ "metadata": {},
92
+ "output_type": "execute_result"
93
+ }
94
+ ],
95
+ "source": [
96
+ "openml.study.list_suites()"
97
+ ]
98
+ },
99
+ {
100
+ "cell_type": "code",
101
+ "execution_count": 9,
102
+ "metadata": {},
103
+ "outputs": [],
104
+ "source": [
105
+ "suite = openml.study.get_suite(suite_id=99)\n",
106
+ "tasks = openml.tasks.list_tasks(output_format=\"dataframe\")"
107
+ ]
108
+ },
109
+ {
110
+ "cell_type": "code",
111
+ "execution_count": 10,
112
+ "metadata": {},
113
+ "outputs": [],
114
+ "source": [
115
+ "# Using ``@`` in `pd.DataFrame.query <\n",
116
+ "# https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html>`_\n",
117
+ "# accesses variables outside of the current dataframe.\n",
118
+ "tasks = tasks.query(\"tid in @suite.tasks\")"
119
+ ]
120
+ },
121
+ {
122
+ "cell_type": "code",
123
+ "execution_count": 11,
124
+ "metadata": {},
125
+ "outputs": [],
126
+ "source": [
127
+ "tids = list(tasks[np.logical_and(np.logical_and((tasks.NumberOfInstances <= 2000), (tasks.NumberOfFeatures <= 100))\n",
128
+ " , (tasks.NumberOfClasses <= 10))].tid)"
129
+ ]
130
+ },
131
+ {
132
+ "cell_type": "code",
133
+ "execution_count": 12,
134
+ "metadata": {},
135
+ "outputs": [
136
+ {
137
+ "data": {
138
+ "text/plain": [
139
+ "30"
140
+ ]
141
+ },
142
+ "execution_count": 12,
143
+ "metadata": {},
144
+ "output_type": "execute_result"
145
+ }
146
+ ],
147
+ "source": [
148
+ "len(tids)"
149
+ ]
150
+ },
151
+ {
152
+ "cell_type": "code",
153
+ "execution_count": 13,
154
+ "metadata": {},
155
+ "outputs": [],
156
+ "source": [
157
+ "tids = list(tasks[tasks.NumberOfInstances <= 2000].tid)"
158
+ ]
159
+ },
160
+ {
161
+ "cell_type": "code",
162
+ "execution_count": 14,
163
+ "metadata": {},
164
+ "outputs": [],
165
+ "source": [
166
+ "open_cc_dids = [openml.tasks.get_task(task_id).get_dataset().id for task_id in tids]"
167
+ ]
168
+ },
169
+ {
170
+ "cell_type": "code",
171
+ "execution_count": null,
172
+ "outputs": [],
173
+ "source": [
174
+ "open_ml_datasets, open_ml_datasets_df = load_openml_list(test_dids_classification, multiclass=True, shuffled=True, filter_for_nan=False, max_samples = 100000, num_feats=100, return_capped=True)\n"
175
+ ],
176
+ "metadata": {
177
+ "collapsed": false,
178
+ "pycharm": {
179
+ "name": "#%%\n"
180
+ }
181
+ }
182
+ },
183
+ {
184
+ "cell_type": "code",
185
+ "execution_count": 16,
186
+ "metadata": {},
187
+ "outputs": [],
188
+ "source": [
189
+ "open_ml_datasets_df = open_ml_datasets_df[open_ml_datasets_df.NumberOfInstances > 10000]"
190
+ ]
191
+ },
192
+ {
193
+ "cell_type": "code",
194
+ "execution_count": 17,
195
+ "metadata": {},
196
+ "outputs": [
197
+ {
198
+ "name": "stdout",
199
+ "output_type": "stream",
200
+ "text": [
201
+ "\\begin{tabular}{lrrrrrrr}\n",
202
+ "\\toprule\n",
203
+ " Name & \\# Features & \\# Categorical Features & \\# Instances & \\# Classes & \\# NaNs & Minority Class Size & id \\\\\n",
204
+ "\\midrule\n",
205
+ " KDDCup09\\_appetency & 231 & 39 & 50000 & 2 & 8024152 & 890 & 1111 \\\\\n",
206
+ " airlines & 8 & 5 & 539383 & 2 & 0 & 240264 & 1169 \\\\\n",
207
+ " bank-marketing & 17 & 10 & 45211 & 2 & 0 & 5289 & 1461 \\\\\n",
208
+ " nomao & 119 & 30 & 34465 & 2 & 0 & 9844 & 1486 \\\\\n",
209
+ " adult & 15 & 9 & 48842 & 2 & 6465 & 11687 & 1590 \\\\\n",
210
+ " covertype & 55 & 45 & 581012 & 7 & 0 & 2747 & 1596 \\\\\n",
211
+ " numerai28.6 & 22 & 1 & 96320 & 2 & 0 & 47662 & 23517 \\\\\n",
212
+ " connect-4 & 43 & 43 & 67557 & 3 & 0 & 6449 & 40668 \\\\\n",
213
+ "jungle\\_chess\\_2pcs\\_raw\\_endgame\\_complete & 7 & 1 & 44819 & 3 & 0 & 4335 & 41027 \\\\\n",
214
+ " APSFailure & 171 & 1 & 76000 & 2 & 1078695 & 1375 & 41138 \\\\\n",
215
+ " albert & 79 & 53 & 425240 & 2 & 2734000 & 212620 & 41147 \\\\\n",
216
+ " MiniBooNE & 51 & 1 & 130064 & 2 & 0 & 36499 & 41150 \\\\\n",
217
+ " guillermo & 4297 & 1 & 20000 & 2 & 0 & 8003 & 41159 \\\\\n",
218
+ " riccardo & 4297 & 1 & 20000 & 2 & 0 & 5000 & 41161 \\\\\n",
219
+ " volkert & 181 & 1 & 58310 & 10 & 0 & 1361 & 41166 \\\\\n",
220
+ " dionis & 61 & 1 & 416188 & 355 & 0 & 878 & 41167 \\\\\n",
221
+ " jannis & 55 & 1 & 83733 & 4 & 0 & 1687 & 41168 \\\\\n",
222
+ " helena & 28 & 1 & 65196 & 100 & 0 & 111 & 41169 \\\\\n",
223
+ "\\bottomrule\n",
224
+ "\\end{tabular}\n",
225
+ "\n"
226
+ ]
227
+ }
228
+ ],
229
+ "source": [
230
+ "print_table = open_ml_datasets_df\n",
231
+ "print_table = print_table[['name', 'NumberOfFeatures', 'NumberOfSymbolicFeatures', 'NumberOfInstances', 'NumberOfClasses', 'NumberOfMissingValues', 'MinorityClassSize']].copy()\n",
232
+ "print_table['id'] = print_table.index\n",
233
+ "print_table[['NumberOfFeatures', 'NumberOfSymbolicFeatures', 'NumberOfInstances', 'NumberOfClasses', 'NumberOfMissingValues', 'MinorityClassSize']] = print_table[['NumberOfFeatures', 'NumberOfSymbolicFeatures', 'NumberOfInstances', 'NumberOfClasses', 'NumberOfMissingValues', 'MinorityClassSize']].astype(int)\n",
234
+ "print_table = print_table.rename(columns=renamer)\n",
235
+ "print(print_table.to_latex(index=False))"
236
+ ]
237
+ },
238
+ {
239
+ "cell_type": "markdown",
240
+ "metadata": {
241
+ "tags": []
242
+ },
243
+ "source": [
244
+ "### Prepare Validation datasets"
245
+ ]
246
+ },
247
+ {
248
+ "cell_type": "code",
249
+ "execution_count": null,
250
+ "outputs": [],
251
+ "source": [
252
+ "open_cc_datasets, open_cc_datasets_df = load_openml_list(open_cc_dids, multiclass=True, shuffled=True, filter_for_nan=False, max_samples = 2000, num_feats=100, return_capped=True)\n",
253
+ "\n",
254
+ "def extend_datasets(datasets, filtering = False):\n",
255
+ " extended_datasets = {}\n",
256
+ " i = 0\n",
257
+ " for d in tqdm(datasets):\n",
258
+ " if ((not 'NumberOfFeatures' in datasets[d])\n",
259
+ " or (not 'NumberOfClasses' in datasets[d])\n",
260
+ " or (not 'NumberOfInstances' in datasets[d])\n",
261
+ " # or datasets[d]['NumberOfFeatures'] >= num_feats\n",
262
+ " or datasets[d]['NumberOfClasses'] <= 0):\n",
263
+ " print(datasets[d])\n",
264
+ " continue\n",
265
+ " ds = openml.datasets.get_dataset(d, download_data=False)\n",
266
+ " if filtering and (datasets[d]['NumberOfInstances'] < 150\n",
267
+ " or datasets[d]['NumberOfInstances'] > 2000\n",
268
+ " or datasets[d]['NumberOfFeatures'] > 100\n",
269
+ " or datasets[d]['NumberOfClasses'] > 10):\n",
270
+ " continue\n",
271
+ " extended_datasets[d] = datasets[d]\n",
272
+ " extended_datasets[d].update(ds.qualities)\n",
273
+ " \n",
274
+ " return extended_datasets\n",
275
+ "\n",
276
+ "# All datasets\n",
277
+ "openml_list = openml.datasets.list_datasets()\n",
278
+ "openml_list = pd.DataFrame.from_dict(openml_list, orient=\"index\")\n",
279
+ "\n",
280
+ "# Select only classification\n",
281
+ "openml_list = openml_list[~openml_list['MajorityClassSize'].isna()]\n",
282
+ "\n",
283
+ "# Remove duplicated datasets\n",
284
+ "duplicated = openml_list.duplicated(subset=['MajorityClassSize', 'MaxNominalAttDistinctValues', 'MinorityClassSize',\n",
285
+ " 'NumberOfClasses', 'NumberOfFeatures', 'NumberOfInstances',\n",
286
+ " 'NumberOfInstancesWithMissingValues', 'NumberOfMissingValues',\n",
287
+ " 'NumberOfNumericFeatures', 'NumberOfSymbolicFeatures'], keep='first')\n",
288
+ "openml_list = openml_list[~duplicated]\n",
289
+ "\n",
290
+ "duplicated = openml_list.duplicated(subset=['name'], keep='first')\n",
291
+ "openml_list = openml_list[~duplicated]\n",
292
+ "\n",
293
+ "# Filter out datasets that don't have meta information or Don't fulfill other criteria\n",
294
+ "openml_list = openml_list.to_dict(orient='index')\n",
295
+ "openml_list = pd.DataFrame.from_dict(extend_datasets(openml_list, filtering=True), orient=\"index\")\n",
296
+ "\n",
297
+ "# Filter out datasets in Open CC\n",
298
+ "openml_list = openml_list[~openml_list.name.apply(lambda x: x in test_datasets_multiclass_df.name.values)]\n",
299
+ "openml_list['CFI'] = openml_list.apply(lambda x: str(x.NumberOfClasses) + '_' + str(x.NumberOfFeatures) + '_' + str(x.NumberOfInstances), axis = 1)\n",
300
+ "test_datasets_multiclass_df['CFI'] = test_datasets_multiclass_df.apply(lambda x: str(x.NumberOfClasses) + '_' + str(x.NumberOfFeatures) + '_' + str(x.NumberOfInstances), axis = 1)\n",
301
+ "openml_list = openml_list[~openml_list.CFI.apply(lambda x: x in test_datasets_multiclass_df.CFI.values)]\n",
302
+ "\n",
303
+ "# Remove time series and artificial data\n",
304
+ "openml_list = openml_list[~openml_list.name.apply(lambda x: 'autoUniv' in x)]\n",
305
+ "openml_list = openml_list[~openml_list.name.apply(lambda x: 'fri_' in x)]\n",
306
+ "openml_list = openml_list[~openml_list.name.apply(lambda x: 'FOREX' in x)]\n",
307
+ "\n",
308
+ "# Remove datasets that overlapped with Open CC closely by name\n",
309
+ "openml_list = openml_list[~openml_list.name.apply(lambda x: 'ilpd' in x)]\n",
310
+ "openml_list = openml_list[~openml_list.name.apply(lambda x: 'car' in x)]\n",
311
+ "openml_list = openml_list[~openml_list.name.apply(lambda x: 'pc1' in x)]\n",
312
+ "\n",
313
+ "# Remove datasets that didn't load\n",
314
+ "openml_list = openml_list[~openml_list.did.apply(lambda x: x in {1065, 40589, 41496, 770, 43097, 43148, 43255, 43595, 43786, 41701})]\n",
315
+ "\n",
316
+ "# Remove class skew\n",
317
+ "openml_list = openml_list[(openml_list.MinorityClassSize / openml_list.MajorityClassSize) > 0.05]\n",
318
+ "openml_list = openml_list[openml_list.AutoCorrelation != 1]\n",
319
+ "\n",
320
+ "# Remove too easy\n",
321
+ "openml_list = openml_list[openml_list.CfsSubsetEval_DecisionStumpAUC != 1]"
322
+ ],
323
+ "metadata": {
324
+ "collapsed": false,
325
+ "pycharm": {
326
+ "name": "#%%\n"
327
+ }
328
+ }
329
+ },
330
+ {
331
+ "cell_type": "code",
332
+ "execution_count": null,
333
+ "metadata": {},
334
+ "outputs": [],
335
+ "source": [
336
+ "print_table = openml_list\n",
337
+ "print_table = print_table[['name', 'NumberOfFeatures', 'NumberOfSymbolicFeatures', 'NumberOfInstances', 'NumberOfClasses', 'NumberOfMissingValues', 'MinorityClassSize']].copy()\n",
338
+ "print_table['id'] = print_table.index\n",
339
+ "print_table[['NumberOfFeatures', 'NumberOfSymbolicFeatures', 'NumberOfInstances', 'NumberOfClasses', 'NumberOfMissingValues', 'MinorityClassSize']] = print_table[['NumberOfFeatures', 'NumberOfSymbolicFeatures', 'NumberOfInstances', 'NumberOfClasses', 'NumberOfMissingValues', 'MinorityClassSize']].astype(int)\n",
340
+ "print_table = print_table.rename(columns=renamer)\n",
341
+ "print(print_table.to_latex(index=False))"
342
+ ]
343
+ },
344
+ {
345
+ "cell_type": "code",
346
+ "execution_count": null,
347
+ "metadata": {},
348
+ "outputs": [],
349
+ "source": []
350
+ }
351
+ ],
352
+ "metadata": {
353
+ "kernelspec": {
354
+ "display_name": "Python 3 (ipykernel)",
355
+ "language": "python",
356
+ "name": "python3"
357
+ },
358
+ "language_info": {
359
+ "codemirror_mode": {
360
+ "name": "ipython",
361
+ "version": 3
362
+ },
363
+ "file_extension": ".py",
364
+ "mimetype": "text/x-python",
365
+ "name": "python",
366
+ "nbconvert_exporter": "python",
367
+ "pygments_lexer": "ipython3",
368
+ "version": "3.7.13"
369
+ }
370
+ },
371
+ "nbformat": 4,
372
+ "nbformat_minor": 4
373
+ }
TabPFN/README.md ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # TabPFN
2
+
3
+ ## Installation
4
+ ```
5
+ git clone [email protected]:automl/TabPFN.git
6
+ cd TabPFN
7
+ conda create -n TabPFN python=3.7
8
+ conda activate TabPFN
9
+ pip install -r requirements.txt
10
+ ```
11
+
12
+ To run the autogluon baseline please create a separate environment and install autogluon==0.4.0, installation in the same environment as our other baselines is not possible.
13
+
14
+ ## Usage
15
+ TrainingTuningAndPrediction: Train a TabPFN, Prior Tune and predict using a pretrained model.
16
+
17
+ TabularEvaluationVisualization: Run Baselines and load Baseline and TabPFN Results for comparison and plotting.
18
+
19
+ PrepareDatasets: Notebook used to inspect Datasets (Not needed to run baselines / TabPFN).
20
+
21
+ SytheticGPAblation: Ablation experiments for Gaussian Process fitting with differentiable Hyper Parameters.
22
+
23
+
TabPFN/SyntheticGPAblation.ipynb ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "%load_ext autoreload\n",
10
+ "\n",
11
+ "%autoreload 2"
12
+ ]
13
+ },
14
+ {
15
+ "cell_type": "code",
16
+ "execution_count": 2,
17
+ "metadata": {},
18
+ "outputs": [],
19
+ "source": [
20
+ "import os\n",
21
+ "import time\n",
22
+ "\n",
23
+ "import torch\n",
24
+ "\n",
25
+ "import numpy as np\n",
26
+ "\n",
27
+ "import matplotlib.pyplot as plt\n",
28
+ "\n",
29
+ "from model_builder import get_model, get_default_spec, save_model, load_model\n",
30
+ "\n",
31
+ "from scripts.model_configs import *"
32
+ ]
33
+ },
34
+ {
35
+ "cell_type": "markdown",
36
+ "metadata": {
37
+ "tags": []
38
+ },
39
+ "source": [
40
+ "# Setting params"
41
+ ]
42
+ },
43
+ {
44
+ "cell_type": "code",
45
+ "execution_count": 6,
46
+ "metadata": {},
47
+ "outputs": [],
48
+ "source": [
49
+ "device = 'cuda'\n",
50
+ "base_path = os.path.join('.')"
51
+ ]
52
+ },
53
+ {
54
+ "cell_type": "code",
55
+ "execution_count": 7,
56
+ "metadata": {},
57
+ "outputs": [],
58
+ "source": [
59
+ "def train_function(config_sample, i, add_name=''):\n",
60
+ " start_time = time.time()\n",
61
+ " N_epochs_to_save = 50\n",
62
+ " \n",
63
+ " def save_callback(model, epoch):\n",
64
+ " if not hasattr(model, 'last_saved_epoch'):\n",
65
+ " model.last_saved_epoch = 0\n",
66
+ " if ((time.time() - start_time) / (maximum_runtime * 60 / N_epochs_to_save)) > model.last_saved_epoch:\n",
67
+ " print('Saving model..')\n",
68
+ " config_sample['epoch_in_training'] = epoch\n",
69
+ " save_model(model, base_path, f'models_diff/prior_diff_real_checkpoint{add_name}_n_{i}_epoch_{model.last_saved_epoch}.cpkt',\n",
70
+ " config_sample)\n",
71
+ " model.last_saved_epoch = model.last_saved_epoch + 1 # TODO: Rename to checkpoint\n",
72
+ " \n",
73
+ " model = get_model(config_sample\n",
74
+ " , device\n",
75
+ " , should_train=True\n",
76
+ " , verbose=1\n",
77
+ " , epoch_callback = save_callback)\n",
78
+ " \n",
79
+ " return"
80
+ ]
81
+ },
82
+ {
83
+ "cell_type": "markdown",
84
+ "metadata": {
85
+ "heading_collapsed": true,
86
+ "tags": []
87
+ },
88
+ "source": [
89
+ "# Check synthetic data fitting"
90
+ ]
91
+ },
92
+ {
93
+ "cell_type": "markdown",
94
+ "metadata": {
95
+ "tags": []
96
+ },
97
+ "source": [
98
+ "#### Workflow functions"
99
+ ]
100
+ },
101
+ {
102
+ "cell_type": "code",
103
+ "execution_count": 8,
104
+ "metadata": {
105
+ "hidden": true,
106
+ "tags": []
107
+ },
108
+ "outputs": [],
109
+ "source": [
110
+ "def generate_test_data(test_gp_params):\n",
111
+ " # Generate test data\n",
112
+ " config = {**test_gp_params}\n",
113
+ "\n",
114
+ " config['verbose'] = False\n",
115
+ " config['differentiable'] = False\n",
116
+ " #config['bptt'] = config['bptt_in_training']\n",
117
+ "\n",
118
+ " model_test_data = get_model(config, device, should_train=False, verbose=True)\n",
119
+ " (hp_embedding, data, targets_), targets = next(iter(model_test_data[3]))\n",
120
+ " (hp_embedding, data, targets_), targets = (hp_embedding, data.to(device), targets_.to(device)), targets.to(device)\n",
121
+ " \n",
122
+ " return (hp_embedding, data, targets_), targets\n",
123
+ "\n",
124
+ "def evaluate_hp_range(model, hparam_true, vary_hparam_ind, data, targets, eval_pos, plot_step_size):\n",
125
+ " losses, hparams = [], []\n",
126
+ " for l in np.arange(-1.74, 1.74, plot_step_size):\n",
127
+ " hparam = [*hparam_true]\n",
128
+ " hparam[vary_hparam_ind] = l\n",
129
+ " hp_embedding_used = torch.tensor(hparam).to(device).float()\n",
130
+ " with torch.inference_mode():\n",
131
+ " outputs = torch.sigmoid(model[2]((hp_embedding_used.repeat(data.shape[1], 1), data, targets.float()), single_eval_pos=eval_pos)).squeeze(-1)\n",
132
+ " \n",
133
+ " loss = torch.nn.BCELoss()(outputs.flatten(), targets[eval_pos:].flatten()).detach().cpu()\n",
134
+ " losses += [loss]\n",
135
+ " hparam_real = [diff_hparams_f[i][1](hp) for i, hp in enumerate(hparam)]\n",
136
+ " hparams += [hparam_real]\n",
137
+ " \n",
138
+ " print(loss, hparam_real, hparam, outputs.shape)\n",
139
+ " return np.array(losses), np.array(hparams)"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "execution_count": 9,
145
+ "metadata": {},
146
+ "outputs": [],
147
+ "source": [
148
+ "def differentiable_hparam_tuning_workflow(config_sample, hparam_label, batch_size=4, N_grad_steps=50, plot_step_size=0.1):\n",
149
+ " test_gp_params = {\n",
150
+ " \"lengthscale\": 1.0,\n",
151
+ " #\"lengthscale_mean\": true_lengthscale,\n",
152
+ " #\"lengthscale_std\": 0.5,\n",
153
+ " \"noise\": 0.2,\n",
154
+ " \"outputscale\": 1.0,\n",
155
+ " 'batch_size': batch_size\n",
156
+ " }\n",
157
+ " config_sample.update(test_gp_params)\n",
158
+ " (hp_embedding, data, targets_), targets = generate_test_data(config_sample)\n",
159
+ " hparam_true = [diff_hparams_f[i][0](test_gp_params[hp]) for i, hp in enumerate(diff_hparams_keys)]\n",
160
+ " #hparam_true = [test_gp_params[hp] for i, hp in enumerate(diff_hparams_keys)]\n",
161
+ "\n",
162
+ " for vary_hparam_ind, vary_hparam_name in hparam_label:\n",
163
+ " print(vary_hparam_name)\n",
164
+ "\n",
165
+ " losses, hparams = evaluate_hp_range(model, hparam_true, vary_hparam_ind, data, targets, eval_pos, plot_step_size=plot_step_size)\n",
166
+ "\n",
167
+ " # TODO: Make only one parameter diffable\n",
168
+ " hparam = torch.tensor([*hparam_true]).to(device).float()\n",
169
+ " hparam[vary_hparam_ind] = hparam[vary_hparam_ind] + 0.1 #random.random() * 2 - 1\n",
170
+ " hparam = torch.nn.Parameter(hparam, requires_grad=True)\n",
171
+ " hparam_grad_mask = torch.zeros_like(hparam)\n",
172
+ " hparam_grad_mask[vary_hparam_ind] = 1\n",
173
+ "\n",
174
+ " optimizer = torch.optim.Adam([hparam], lr=0.1)\n",
175
+ " \n",
176
+ " for t in range(N_grad_steps):\n",
177
+ " style = hparam.repeat(data.shape[1], 1)\n",
178
+ " outputs = torch.sigmoid(model[2]((style, data, targets.float()), single_eval_pos=eval_pos)).squeeze(-1)\n",
179
+ " loss = torch.nn.BCELoss()(outputs.flatten(), targets[eval_pos:].flatten())\n",
180
+ " optimizer.zero_grad()\n",
181
+ " loss.backward()\n",
182
+ " with torch.no_grad():\n",
183
+ " hparam.grad *= hparam_grad_mask\n",
184
+ " optimizer.step()\n",
185
+ " print('loss:', loss, 'hparams', diff_hparams_f[vary_hparam_ind][1](hparam[vary_hparam_ind]), 'true', diff_hparams_f[vary_hparam_ind][1](hparam_true[vary_hparam_ind]))\n",
186
+ " inferred_param = diff_hparams_f[vary_hparam_ind][1](hparam[vary_hparam_ind].cpu().detach().numpy())\n",
187
+ " return hparams, losses, inferred_param, vary_hparam_ind, hparam_true\n",
188
+ " "
189
+ ]
190
+ },
191
+ {
192
+ "cell_type": "markdown",
193
+ "metadata": {
194
+ "tags": []
195
+ },
196
+ "source": [
197
+ "#### Fitting a PFN with HP-Diffable GP Prior"
198
+ ]
199
+ },
200
+ {
201
+ "cell_type": "code",
202
+ "execution_count": 10,
203
+ "metadata": {
204
+ "hidden": true,
205
+ "tags": []
206
+ },
207
+ "outputs": [],
208
+ "source": [
209
+ "num_features = 5\n",
210
+ "bptt = 200\n",
211
+ "eval_positions = [100]\n",
212
+ "\n",
213
+ "config_general = get_general_config(num_features, bptt, eval_positions)\n",
214
+ "config_flexible_categorical = get_flexible_categorical_config(num_features)\n",
215
+ "\n",
216
+ "config_gp = {'noise': 0.2, \"lengthscale\": 1.0, \"outputscale\": 1.0}\n",
217
+ "config_diff_gp = {'differentiable_hyperparameters': {\n",
218
+ " 'outputscale': {'distribution': 'uniform', 'min': 0., 'max': 10.0},\n",
219
+ " 'lengthscale': {'distribution': 'uniform', 'min': 0., 'max': 10.0},\n",
220
+ " 'noise': {'distribution': 'uniform', 'min': 0.0000001, 'max': 0.5},\n",
221
+ " }\n",
222
+ "}\n",
223
+ "\n",
224
+ "config = {**config_general, **config_flexible_categorical, **config_diff_gp, **config_gp}\n",
225
+ "\n",
226
+ "config['prior_type'], config['differentiable'], config['flexible'] = 'gp', True, True\n",
227
+ "config['num_features'], config['num_features_used'] = num_features, num_features\n",
228
+ "config['epochs'], config['num_steps'], config['verbose'] = 500, 100, False\n",
229
+ "config[\"lr\"] = 0.00001\n",
230
+ "config[\"dropout\"] = 0\n",
231
+ "config[\"emsize\"] = 512\n",
232
+ "config[\"batch_size\"] = 128\n",
233
+ "config[\"aggregate_k_gradients\"] = 1\n",
234
+ "config['set_value_to_nan'] = 0.0\n",
235
+ "config['output_multiclass_ordered_p'] = 1.0\n",
236
+ "config['categorical_feature_p'] = 0.0\n",
237
+ "config['nan_prob_a_reason'] = 0.0\n",
238
+ "config['nan_prob_no_reason'] = 0.0\n",
239
+ "config['nan_prob_unknown_reason'] = 0.0\n",
240
+ "config[\"nlayers\"] = 8\n",
241
+ "\n",
242
+ "# TODO: This should not be sampled, but be one config\n",
243
+ "# TODO: This uses old hyperparam sampler throws error\n",
244
+ "config_sample = evaluate_hypers(config)"
245
+ ]
246
+ },
247
+ {
248
+ "cell_type": "code",
249
+ "execution_count": 11,
250
+ "metadata": {
251
+ "hidden": true,
252
+ "tags": []
253
+ },
254
+ "outputs": [
255
+ {
256
+ "name": "stdout",
257
+ "output_type": "stream",
258
+ "text": [
259
+ "Using style prior: True\n",
260
+ "Using cpu:0 device\n",
261
+ "Not using distributed\n",
262
+ "DataLoader.__dict__ {'num_steps': 100, 'fuse_x_y': False, 'get_batch_kwargs': {'batch_size': 128, 'seq_len': 200, 'seq_len_maximum': 200, 'device': 'cpu:0', 'num_features': 5, 'hyperparameters': {'lr': 1e-05, 'dropout': 0, 'emsize': 512, 'batch_size': 128, 'nlayers': 8, 'num_features': 5, 'nhead': 4, 'nhid_factor': 2, 'bptt': 200, 'eval_positions': None, 'seq_len_used': 200, 'sampling': 'normal', 'epochs': 500, 'num_steps': 100, 'verbose': False, 'pre_sample_causes': True, 'mix_activations': False, 'nan_prob_unknown_reason_reason_prior': 1.0, 'categorical_feature_p': 0.0, 'nan_prob_no_reason': 0.0, 'nan_prob_unknown_reason': 0.0, 'nan_prob_a_reason': 0.0, 'max_num_classes': 2, 'num_classes': 2, 'noise_type': 'Gaussian', 'balanced': True, 'normalize_to_ranking': False, 'set_value_to_nan': 0.0, 'normalize_by_used_features': True, 'num_features_used': 5, 'differentiable_hyperparameters': {'distribution': 'uniform', 'min': 0.0, 'max': 10.0}, 'noise': 0.2, 'lengthscale': 1.0, 'outputscale': 1.0, 'prior_type': 'gp', 'differentiable': True, 'flexible': True, 'aggregate_k_gradients': 1, 'output_multiclass_ordered_p': 1.0, 'recompute_attn': False}, 'num_outputs': 1, 'dynamic_batch_size': 2, 'get_batch': <function get_model.<locals>.make_get_batch.<locals>.<lambda> at 0x7f39ad8dcf80>, 'differentiable_hyperparameters': {'outputscale': {'distribution': 'uniform', 'min': 0.0, 'max': 10.0}, 'lengthscale': {'distribution': 'uniform', 'min': 0.0, 'max': 10.0}, 'noise': {'distribution': 'uniform', 'min': 1e-07, 'max': 0.5}}}, 'num_features': 5, 'num_outputs': 1}\n",
263
+ "Using a Transformer with 17.35 M parameters\n"
264
+ ]
265
+ }
266
+ ],
267
+ "source": [
268
+ "device = 'cuda'\n",
269
+ "train_function(config_sample, 0, add_name='gp_experiments_diff_with_noise_no_meta_new')"
270
+ ]
271
+ },
272
+ {
273
+ "cell_type": "markdown",
274
+ "metadata": {
275
+ "tags": []
276
+ },
277
+ "source": [
278
+ "#### Evaluating a PFN (with pretrained model)"
279
+ ]
280
+ },
281
+ {
282
+ "cell_type": "code",
283
+ "execution_count": 13,
284
+ "metadata": {
285
+ "hidden": true,
286
+ "tags": []
287
+ },
288
+ "outputs": [
289
+ {
290
+ "name": "stdout",
291
+ "output_type": "stream",
292
+ "text": [
293
+ "Using style prior: True\n",
294
+ "Using cpu:0 device\n",
295
+ "Not using distributed\n",
296
+ "DataLoader.__dict__ {'num_steps': 100, 'fuse_x_y': False, 'get_batch_kwargs': {'batch_size': 1, 'seq_len': 10, 'seq_len_maximum': 10, 'device': 'cpu:0', 'num_features': 5, 'hyperparameters': {'lr': 1e-05, 'dropout': 0, 'emsize': 512, 'batch_size': 1, 'nlayers': 8, 'num_features': 5, 'nhead': 4, 'nhid_factor': 2, 'bptt': 10, 'eval_positions': [190], 'seq_len_used': 200, 'sampling': 'normal', 'epochs': 500, 'num_steps': 100, 'verbose': False, 'pre_sample_causes': True, 'mix_activations': False, 'nan_prob_unknown_reason_reason_prior': 1.0, 'output_multiclass_ordered_p': 1.0, 'categorical_feature_p': 0.0, 'nan_prob_no_reason': 0.0, 'nan_prob_unknown_reason': 0.0, 'nan_prob_a_reason': 0.0, 'max_num_classes': 2, 'num_classes': 2, 'noise_type': 'Gaussian', 'balanced': True, 'multiclass_type': 'rank', 'normalize_to_ranking': False, 'set_value_to_nan': 0.0, 'normalize_by_used_features': True, 'num_features_used': <function load_model.<locals>.<lambda> at 0x7f39ad8534d0>, 'differentiable_hyperparameters': {'distribution': 'uniform', 'min': 0.0, 'max': 10.0}, 'noise': 0.03, 'lengthscale': 1.0, 'outputscale': 1.0, 'prior_type': 'gp', 'differentiable': True, 'flexible': True, 'aggregate_k_gradients': 1, 'recompute_attn': False, 'bptt_extra_samples': None, 'epoch_in_training': 0.998, 'categorical_features_sampler': <function load_model.<locals>.<lambda> at 0x7f39ad853680>, 'num_features_used_in_training': 5, 'num_classes_in_training': 2, 'batch_size_in_training': 128, 'bptt_in_training': 200, 'bptt_extra_samples_in_training': None}, 'num_outputs': 1, 'dynamic_batch_size': 2, 'get_batch': <function get_model.<locals>.make_get_batch.<locals>.<lambda> at 0x7f39ad81ab90>, 'differentiable_hyperparameters': {'outputscale': {'distribution': 'uniform', 'min': 0.0, 'max': 10.0}, 'lengthscale': {'distribution': 'uniform', 'min': 0.0, 'max': 10.0}, 'noise': {'distribution': 'uniform', 'min': 1e-07, 'max': 0.5}}}, 'num_features': 5, 'num_outputs': 1}\n",
297
+ "Using a Transformer with 17.35 M parameters\n"
298
+ ]
299
+ }
300
+ ],
301
+ "source": [
302
+ "device = 'cpu'\n",
303
+ "model, c = load_model(base_path, f'models_diff/gp_ablation_model.cpkt', device, eval_positions, verbose=False)"
304
+ ]
305
+ },
306
+ {
307
+ "cell_type": "code",
308
+ "execution_count": 14,
309
+ "metadata": {},
310
+ "outputs": [],
311
+ "source": [
312
+ "from priors.differentiable_prior import DifferentiableHyperparameterList\n",
313
+ "diff_list = DifferentiableHyperparameterList(c['differentiable_hyperparameters'], 512, device)\n",
314
+ "diff_hparams_keys, diff_hparams_f = diff_list.get_hyperparameter_info()"
315
+ ]
316
+ },
317
+ {
318
+ "cell_type": "code",
319
+ "execution_count": null,
320
+ "metadata": {
321
+ "tags": []
322
+ },
323
+ "outputs": [],
324
+ "source": [
325
+ "model[2].eval()\n",
326
+ "eval_pos = 100\n",
327
+ "\n",
328
+ "hparam_label = [(1, 'outputscale')]\n",
329
+ "hparam_label = [(0, 'lengthscale')]\n",
330
+ "hparam_label = [(2, 'noise')]\n",
331
+ "hparam_labels = [[(1, 'outputscale')], [(2, 'noise')], [(0, 'lengthscale')]]\n",
332
+ "#hparam_labels = [[(2, 'noise')]]\n",
333
+ "\n",
334
+ "hparams, losses, inferred_param, vary_hparam_ind, hparam_true = {}, {}, {}, {}, {}\n",
335
+ "\n",
336
+ "for hparam_label in hparam_labels:\n",
337
+ " (hparams[hparam_label[0][1]], losses[hparam_label[0][1]], inferred_param[hparam_label[0][1]], vary_hparam_ind[hparam_label[0][1]], \n",
338
+ " hparam_true[hparam_label[0][1]]) = differentiable_hparam_tuning_workflow(config_sample, \n",
339
+ " hparam_label=hparam_label, \n",
340
+ " batch_size=256, \n",
341
+ " N_grad_steps=50,\n",
342
+ " plot_step_size=0.05)\n"
343
+ ]
344
+ },
345
+ {
346
+ "cell_type": "code",
347
+ "execution_count": null,
348
+ "metadata": {},
349
+ "outputs": [],
350
+ "source": [
351
+ "label = 'lengthscale'\n",
352
+ "\n",
353
+ "#import tikzplotlib\n",
354
+ "\n",
355
+ "inferred = losses[label]\n",
356
+ "\n",
357
+ "plt.plot(hparams[label][:, vary_hparam_ind[label]], losses[label])\n",
358
+ "true = diff_hparams_f[vary_hparam_ind[label]][1](hparam_true[label][vary_hparam_ind[label]])\n",
359
+ "plt.axvline(x=inferred_param[label], linestyle='solid', color='red')\n",
360
+ "plt.axvline(x=true, linestyle='dashed')\n",
361
+ "\n",
362
+ "plt.ylabel('Cross entropy Loss')\n",
363
+ "plt.xlabel(label)\n",
364
+ "\n",
365
+ "#tikzplotlib.save(f'diff_inferred_params_{label}.tex', axis_height='5.2cm', axis_width='5.2cm', strict=True)\n",
366
+ "\n",
367
+ "plt.show()"
368
+ ]
369
+ }
370
+ ],
371
+ "metadata": {
372
+ "kernelspec": {
373
+ "display_name": "Python 3 (ipykernel)",
374
+ "language": "python",
375
+ "name": "python3"
376
+ },
377
+ "language_info": {
378
+ "codemirror_mode": {
379
+ "name": "ipython",
380
+ "version": 3
381
+ },
382
+ "file_extension": ".py",
383
+ "mimetype": "text/x-python",
384
+ "name": "python",
385
+ "nbconvert_exporter": "python",
386
+ "pygments_lexer": "ipython3",
387
+ "version": "3.7.13"
388
+ }
389
+ },
390
+ "nbformat": 4,
391
+ "nbformat_minor": 4
392
+ }
TabPFN/TabPFNPredictionOnly.ipynb ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "This notebook shows how to use TabPFN for tabular prediction with a scikit learn wrapper.\n",
8
+ "\n",
9
+ "classifier = TabPFNClassifier(device='cpu')\n",
10
+ "classifier.fit(train_xs, train_ys)\n",
11
+ "prediction_ = classifier.predict(test_xs)\n",
12
+ "\n",
13
+ "The fit function does not perform any computations, but only saves the training data. Computations are only done at inference time, when calling predict.\n",
14
+ "Note that the presaved models were trained for up to 100 features, 10 classes and 1000 samples. While the model does not have a hard bound on the number of samples, the features and classes are restricted and larger sizes lead to an error."
15
+ ]
16
+ },
17
+ {
18
+ "cell_type": "markdown",
19
+ "metadata": {
20
+ "tags": []
21
+ },
22
+ "source": [
23
+ "### Setup"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": null,
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "%load_ext autoreload\n",
33
+ "\n",
34
+ "%autoreload 2"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": null,
40
+ "metadata": {},
41
+ "outputs": [],
42
+ "source": [
43
+ "import time\n",
44
+ "import torch\n",
45
+ "import numpy as np\n",
46
+ "import os\n",
47
+ "import random\n",
48
+ "\n",
49
+ "from model_builder import get_model, get_default_spec, save_model, load_model\n",
50
+ "from scripts.transformer_prediction_interface import transformer_predict, get_params_from_config, TabPFNClassifier\n",
51
+ "\n",
52
+ "from datasets import load_openml_list, open_cc_dids, open_cc_valid_dids\n",
53
+ "\n",
54
+ "from scripts import tabular_metrics"
55
+ ]
56
+ },
57
+ {
58
+ "cell_type": "code",
59
+ "execution_count": null,
60
+ "metadata": {},
61
+ "outputs": [],
62
+ "source": [
63
+ "base_path = '.'"
64
+ ]
65
+ },
66
+ {
67
+ "cell_type": "markdown",
68
+ "metadata": {
69
+ "tags": []
70
+ },
71
+ "source": [
72
+ "### Load datasets"
73
+ ]
74
+ },
75
+ {
76
+ "cell_type": "code",
77
+ "execution_count": null,
78
+ "metadata": {
79
+ "jupyter": {
80
+ "outputs_hidden": true
81
+ },
82
+ "tags": []
83
+ },
84
+ "outputs": [],
85
+ "source": [
86
+ "max_samples = 10000\n",
87
+ "bptt = 10000\n",
88
+ "\n",
89
+ "cc_test_datasets_multiclass, cc_test_datasets_multiclass_df = load_openml_list(open_cc_dids, multiclass=True, shuffled=True, filter_for_nan=False, max_samples = max_samples, num_feats=100, return_capped=True)\n",
90
+ "cc_valid_datasets_multiclass, cc_valid_datasets_multiclass_df = load_openml_list(open_cc_valid_dids, multiclass=True, shuffled=True, filter_for_nan=False, max_samples = max_samples, num_feats=100, return_capped=True)\n",
91
+ "\n",
92
+ "# Loading longer OpenML Datasets for generalization experiments (optional)\n",
93
+ "# test_datasets_multiclass, test_datasets_multiclass_df = load_openml_list(test_dids_classification, multiclass=True, shuffled=True, filter_for_nan=False, max_samples = 10000, num_feats=100, return_capped=True)\n",
94
+ "\n",
95
+ "random.seed(0)\n",
96
+ "random.shuffle(cc_valid_datasets_multiclass)"
97
+ ]
98
+ },
99
+ {
100
+ "cell_type": "code",
101
+ "execution_count": null,
102
+ "metadata": {},
103
+ "outputs": [],
104
+ "source": [
105
+ "from datasets import get_openml_classification"
106
+ ]
107
+ },
108
+ {
109
+ "cell_type": "code",
110
+ "execution_count": null,
111
+ "metadata": {},
112
+ "outputs": [],
113
+ "source": [
114
+ "dataset = openml.datasets.get_dataset(31)\n",
115
+ "X, y, categorical_indicator, attribute_names = dataset.get_data(\n",
116
+ " dataset_format=\"array\", target=dataset.default_target_attribute\n",
117
+ " )"
118
+ ]
119
+ },
120
+ {
121
+ "cell_type": "code",
122
+ "execution_count": null,
123
+ "metadata": {},
124
+ "outputs": [],
125
+ "source": [
126
+ "def get_datasets(selector, task_type, suite='cc'):\n",
127
+ " if task_type == 'binary':\n",
128
+ " ds = valid_datasets_binary if selector == 'valid' else test_datasets_binary\n",
129
+ " else:\n",
130
+ " if suite == 'openml':\n",
131
+ " ds = valid_datasets_multiclass if selector == 'valid' else test_datasets_multiclass\n",
132
+ " elif suite == 'cc':\n",
133
+ " ds = cc_valid_datasets_multiclass if selector == 'valid' else cc_test_datasets_multiclass\n",
134
+ " else:\n",
135
+ " raise Exception(\"Unknown suite\")\n",
136
+ " return ds"
137
+ ]
138
+ },
139
+ {
140
+ "cell_type": "code",
141
+ "execution_count": null,
142
+ "metadata": {},
143
+ "outputs": [],
144
+ "source": [
145
+ "model_string, longer, task_type = '', 1, 'multiclass'\n",
146
+ "eval_positions = [1000]\n",
147
+ "bptt = 2000\n",
148
+ " \n",
149
+ "test_datasets, valid_datasets = get_datasets('test', task_type, suite='cc'), get_datasets('valid', task_type, suite='cc')"
150
+ ]
151
+ },
152
+ {
153
+ "cell_type": "markdown",
154
+ "metadata": {
155
+ "jp-MarkdownHeadingCollapsed": true,
156
+ "tags": []
157
+ },
158
+ "source": [
159
+ "### Select a dataset for prediction"
160
+ ]
161
+ },
162
+ {
163
+ "cell_type": "code",
164
+ "execution_count": null,
165
+ "metadata": {},
166
+ "outputs": [],
167
+ "source": [
168
+ "[(i, test_datasets[i][0]) for i in range(len(test_datasets))]"
169
+ ]
170
+ },
171
+ {
172
+ "cell_type": "code",
173
+ "execution_count": null,
174
+ "metadata": {},
175
+ "outputs": [],
176
+ "source": [
177
+ "evaluation_dataset_index = 4 # Index of the dataset to predict\n",
178
+ "ds = test_datasets[evaluation_dataset_index]\n",
179
+ "print(f'Evaluation dataset name: {ds[0]} shape {ds[1].shape}')"
180
+ ]
181
+ },
182
+ {
183
+ "cell_type": "code",
184
+ "execution_count": null,
185
+ "metadata": {},
186
+ "outputs": [],
187
+ "source": [
188
+ "xs, ys = ds[1].clone(), ds[2].clone()\n",
189
+ "eval_position = xs.shape[0] // 2\n",
190
+ "train_xs, train_ys = xs[0:eval_position], ys[0:eval_position]\n",
191
+ "test_xs, test_ys = xs[eval_position:], ys[eval_position:]"
192
+ ]
193
+ },
194
+ {
195
+ "cell_type": "markdown",
196
+ "metadata": {
197
+ "tags": []
198
+ },
199
+ "source": [
200
+ "### Predict using a Fitted and Tuned Model"
201
+ ]
202
+ },
203
+ {
204
+ "cell_type": "code",
205
+ "execution_count": null,
206
+ "metadata": {},
207
+ "outputs": [],
208
+ "source": [
209
+ "classifier = TabPFNClassifier(device='cpu')\n",
210
+ "classifier.fit(train_xs, train_ys)\n",
211
+ "prediction_ = classifier.predict_proba(test_xs)"
212
+ ]
213
+ },
214
+ {
215
+ "cell_type": "code",
216
+ "execution_count": null,
217
+ "metadata": {},
218
+ "outputs": [],
219
+ "source": [
220
+ "roc, ce = tabular_metrics.auc_metric(test_ys, prediction_), tabular_metrics.cross_entropy(test_ys, prediction_)\n",
221
+ "'AUC', float(roc), 'Cross Entropy', float(ce)"
222
+ ]
223
+ },
224
+ {
225
+ "cell_type": "code",
226
+ "execution_count": null,
227
+ "metadata": {},
228
+ "outputs": [],
229
+ "source": []
230
+ }
231
+ ],
232
+ "metadata": {
233
+ "kernelspec": {
234
+ "display_name": "Python 3 (ipykernel)",
235
+ "language": "python",
236
+ "name": "python3"
237
+ },
238
+ "language_info": {
239
+ "codemirror_mode": {
240
+ "name": "ipython",
241
+ "version": 3
242
+ },
243
+ "file_extension": ".py",
244
+ "mimetype": "text/x-python",
245
+ "name": "python",
246
+ "nbconvert_exporter": "python",
247
+ "pygments_lexer": "ipython3",
248
+ "version": "3.7.13"
249
+ }
250
+ },
251
+ "nbformat": 4,
252
+ "nbformat_minor": 4
253
+ }
TabPFN/TabularEvaluationVisualization.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
TabPFN/TrainingTuningAndPrediction.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
TabPFN/__pycache__/encoders.cpython-39.pyc ADDED
Binary file (9.42 kB). View file
 
TabPFN/__pycache__/layer.cpython-39.pyc ADDED
Binary file (4.56 kB). View file
 
TabPFN/__pycache__/model_builder.cpython-39.pyc ADDED
Binary file (9.88 kB). View file
 
TabPFN/__pycache__/notebook_utils.cpython-39.pyc ADDED
Binary file (1.53 kB). View file
 
TabPFN/__pycache__/positional_encodings.cpython-39.pyc ADDED
Binary file (2.91 kB). View file
 
TabPFN/__pycache__/train.cpython-39.pyc ADDED
Binary file (12.2 kB). View file
 
TabPFN/__pycache__/transformer.cpython-39.pyc ADDED
Binary file (8.01 kB). View file
 
TabPFN/__pycache__/utils.cpython-39.pyc ADDED
Binary file (10.2 kB). View file
 
TabPFN/datasets/__init__.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import torch
3
+ import numpy as np
4
+ import openml
5
+
6
+
7
+ def get_openml_classification(did, max_samples, multiclass=True, shuffled=True):
8
+ dataset = openml.datasets.get_dataset(did)
9
+ X, y, categorical_indicator, attribute_names = dataset.get_data(
10
+ dataset_format="array", target=dataset.default_target_attribute
11
+ )
12
+
13
+ if not multiclass:
14
+ X = X[y < 2]
15
+ y = y[y < 2]
16
+
17
+ if multiclass and not shuffled:
18
+ raise NotImplementedError("This combination of multiclass and shuffling isn't implemented")
19
+
20
+ if not isinstance(X, np.ndarray) or not isinstance(y, np.ndarray):
21
+ print('Not a NP Array, skipping')
22
+ return None, None, None, None
23
+
24
+ if not shuffled:
25
+ sort = np.argsort(y) if y.mean() < 0.5 else np.argsort(-y)
26
+ pos = int(y.sum()) if y.mean() < 0.5 else int((1 - y).sum())
27
+ X, y = X[sort][-pos * 2:], y[sort][-pos * 2:]
28
+ y = torch.tensor(y).reshape(2, -1).transpose(0, 1).reshape(-1).flip([0]).float()
29
+ X = torch.tensor(X).reshape(2, -1, X.shape[1]).transpose(0, 1).reshape(-1, X.shape[1]).flip([0]).float()
30
+ else:
31
+ order = np.arange(y.shape[0])
32
+ np.random.seed(13)
33
+ np.random.shuffle(order)
34
+ X, y = torch.tensor(X[order]), torch.tensor(y[order])
35
+ if max_samples:
36
+ X, y = X[:max_samples], y[:max_samples]
37
+
38
+ return X, y, list(np.where(categorical_indicator)[0]), attribute_names
39
+
40
+ def load_openml_list(dids, filter_for_nan=False
41
+ , num_feats=100
42
+ , min_samples = 100
43
+ , max_samples=400
44
+ , multiclass=True
45
+ , max_num_classes=10
46
+ , shuffled=True
47
+ , return_capped = False):
48
+ datasets = []
49
+ openml_list = openml.datasets.list_datasets(dids)
50
+ print(f'Number of datasets: {len(openml_list)}')
51
+
52
+ datalist = pd.DataFrame.from_dict(openml_list, orient="index")
53
+ if filter_for_nan:
54
+ datalist = datalist[datalist['NumberOfInstancesWithMissingValues'] == 0]
55
+ print(f'Number of datasets after Nan and feature number filtering: {len(datalist)}')
56
+
57
+ for ds in datalist.index:
58
+ modifications = {'samples_capped': False, 'classes_capped': False, 'feats_capped': False}
59
+ entry = datalist.loc[ds]
60
+
61
+ print('Loading', entry['name'], entry.did, '..')
62
+
63
+ if entry['NumberOfClasses'] == 0.0:
64
+ raise Exception("Regression not supported")
65
+ #X, y, categorical_feats, attribute_names = get_openml_regression(int(entry.did), max_samples)
66
+ else:
67
+ X, y, categorical_feats, attribute_names = get_openml_classification(int(entry.did), max_samples
68
+ , multiclass=multiclass, shuffled=shuffled)
69
+ if X is None:
70
+ continue
71
+
72
+ if X.shape[1] > num_feats:
73
+ if return_capped:
74
+ X = X[:, 0:num_feats]
75
+ categorical_feats = [c for c in categorical_feats if c < num_feats]
76
+ modifications['feats_capped'] = True
77
+ else:
78
+ print('Too many features')
79
+ continue
80
+ if X.shape[0] == max_samples:
81
+ modifications['samples_capped'] = True
82
+
83
+ if X.shape[0] < min_samples:
84
+ print(f'Too few samples left')
85
+ continue
86
+
87
+ if len(np.unique(y)) > max_num_classes:
88
+ if return_capped:
89
+ X = X[y < np.unique(y)[10]]
90
+ y = y[y < np.unique(y)[10]]
91
+ modifications['classes_capped'] = True
92
+ else:
93
+ print(f'Too many classes')
94
+ continue
95
+
96
+ datasets += [[entry['name'], X, y, categorical_feats, attribute_names, modifications]]
97
+
98
+ return datasets, datalist
99
+
100
+
101
+ # Classification
102
+ valid_dids_classification = [13, 59, 4, 15, 40710, 43, 1498]
103
+ test_dids_classification = [973, 1596, 40981, 1468, 40984, 40975, 41163, 41147, 1111, 41164, 1169, 1486, 41143, 1461, 41167, 40668, 41146, 41169, 41027, 23517, 41165, 41161, 41159, 41138, 1590, 41166, 1464, 41168, 41150, 1489, 41142, 3, 12, 31, 54, 1067]
104
+ valid_large_classification = [ 943, 23512, 49, 838, 1131, 767, 1142, 748, 1112,
105
+ 1541, 384, 912, 1503, 796, 20, 30, 903, 4541,
106
+ 961, 805, 1000, 4135, 1442, 816, 1130, 906, 1511,
107
+ 184, 181, 137, 1452, 1481, 949, 449, 50, 913,
108
+ 1071, 831, 843, 9, 896, 1532, 311, 39, 451,
109
+ 463, 382, 778, 474, 737, 1162, 1538, 820, 188,
110
+ 452, 1156, 37, 957, 911, 1508, 1054, 745, 1220,
111
+ 763, 900, 25, 387, 38, 757, 1507, 396, 4153,
112
+ 806, 779, 746, 1037, 871, 717, 1480, 1010, 1016,
113
+ 981, 1547, 1002, 1126, 1459, 846, 837, 1042, 273,
114
+ 1524, 375, 1018, 1531, 1458, 6332, 1546, 1129, 679,
115
+ 389]
116
+
117
+ open_cc_dids = [11,
118
+ 14,
119
+ 15,
120
+ 16,
121
+ 18,
122
+ 22,
123
+ 23,
124
+ 29,
125
+ 31,
126
+ 37,
127
+ 50,
128
+ 54,
129
+ 188,
130
+ 458,
131
+ 469,
132
+ 1049,
133
+ 1050,
134
+ 1063,
135
+ 1068,
136
+ 1510,
137
+ 1494,
138
+ 1480,
139
+ 1462,
140
+ 1464,
141
+ 6332,
142
+ 23381,
143
+ 40966,
144
+ 40982,
145
+ 40994,
146
+ 40975]
147
+ # Filtered by N_samples < 2000, N feats < 100, N classes < 10
148
+
149
+ open_cc_valid_dids = [13,25,35,40,41,43,48,49,51,53,55,56,59,61,187,285,329,333,334,335,336,337,338,377,446,450,451,452,460,463,464,466,470,475,481,679,694,717,721,724,733,738,745,747,748,750,753,756,757,764,765,767,774,778,786,788,795,796,798,801,802,810,811,814,820,825,826,827,831,839,840,841,844,852,853,854,860,880,886,895,900,906,907,908,909,915,925,930,931,934,939,940,941,949,966,968,984,987,996,1048,1054,1071,1073,1100,1115,1412,1442,1443,1444,1446,1447,1448,1451,1453,1488,1490,1495,1498,1499,1506,1508,1511,1512,1520,1523,4153,23499,40496,40646,40663,40669,40680,40682,40686,40690,40693,40705,40706,40710,40711,40981,41430,41538,41919,41976,42172,42261,42544,42585,42638]
TabPFN/datasets/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (4.69 kB). View file
 
TabPFN/datasets/utils.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ def normalize_data(eval_xs):
2
+ mean = eval_xs.mean(0)
3
+ std = eval_xs.std(0) + .000001
4
+ eval_xs = (eval_xs - mean) / std
5
+
6
+ return eval_xs
7
+
8
+
TabPFN/decoders.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import random
4
+
5
+
6
+ class ScaledDecoder(nn.Module):
7
+ def __init__(self, ninp, nhid, nout):
8
+ super().__init__()
9
+ self.linear = nn.Linear(ninp, nhid)
10
+ self.linear1 = nn.Linear(nhid, nout)
11
+ self.linear2 = nn.Linear(nhid, 10)
12
+
13
+ def forward(self, x):
14
+ #return torch.cat([self.linear1(x), self.linear2(x)], -1)
15
+ x = self.linear(x)
16
+ x = nn.GELU()(x)
17
+ temps = self.linear2(x).softmax(-1) @ torch.tensor([1.,1.4,1.7,2.,5.,10.,20.,40.,80.,160.], device=x.device)
18
+ if random.random() > .99:
19
+ print(temps.shape,temps[:,:2])
20
+ return self.linear1(x) / temps.unsqueeze(-1)
21
+
22
+ class FixedScaledDecoder(nn.Module):
23
+ def __init__(self, ninp, nhid, nout):
24
+ super().__init__()
25
+ self.mapper = nn.Sequential(nn.Linear(ninp, nhid), nn.GELU(), nn.Linear(nhid, nout))
26
+ self.T = nn.Parameter(torch.ones(10000)/10000)
27
+
28
+ def forward(self, x):
29
+ return self.mapper(x)/self.T.sum()
30
+
TabPFN/differentiable_pfn_evaluation.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import numpy as np
4
+ import time
5
+ import pickle
6
+ from scripts import tabular_metrics
7
+ from scripts.tabular_metrics import calculate_score_per_method
8
+ from scripts.tabular_evaluation import evaluate
9
+ from priors.differentiable_prior import draw_random_style
10
+ from tqdm import tqdm
11
+ import random
12
+ from scripts.transformer_prediction_interface import get_params_from_config, load_model_workflow
13
+
14
+ """
15
+ ===============================
16
+ PUBLIC FUNCTIONS FOR EVALUATION
17
+ ===============================
18
+ """
19
+
20
+
21
+ def eval_model_range(i_range, *args, **kwargs):
22
+ for i in i_range:
23
+ eval_model(i, *args, **kwargs)
24
+
25
+
26
+
27
+ def eval_model(i, e, valid_datasets, test_datasets, train_datasets, eval_positions_valid, eval_positions_test,
28
+ bptt_valid,
29
+ bptt_test, add_name, base_path, device='cpu', eval_addition='', **extra_tuning_args):
30
+ """
31
+ Differentiable model evaliation workflow. Evaluates and saves results to disk.
32
+
33
+ :param i:
34
+ :param e:
35
+ :param valid_datasets:
36
+ :param test_datasets:
37
+ :param train_datasets:
38
+ :param eval_positions_valid:
39
+ :param eval_positions_test:
40
+ :param bptt_valid:
41
+ :param bptt_test:
42
+ :param add_name:
43
+ :param base_path:
44
+ :param device:
45
+ :param eval_addition:
46
+ :param extra_tuning_args:
47
+ :return:
48
+ """
49
+ model, c, results_file = load_model_workflow(i, e, add_name, base_path, device, eval_addition)
50
+ params = {'bptt': bptt_valid
51
+ , 'bptt_final': bptt_test
52
+ , 'eval_positions': eval_positions_valid
53
+ , 'eval_positions_test': eval_positions_test
54
+ , 'valid_datasets': valid_datasets
55
+ , 'test_datasets': test_datasets
56
+ , 'train_datasets': train_datasets
57
+ , 'verbose': True
58
+ , 'device': device
59
+ }
60
+
61
+ params.update(get_params_from_config(c))
62
+
63
+ start = time.time()
64
+ metrics, metrics_valid, style, temperature, optimization_route = evaluate_differentiable_model(model, **params,
65
+ **extra_tuning_args)
66
+ print('Evaluation time: ', time.time() - start)
67
+
68
+ print(results_file)
69
+ r = [c.copy(), metrics, metrics_valid, style.to('cpu'), temperature.to('cpu'), optimization_route]
70
+ with open(results_file, 'wb') as output:
71
+ del r[0]['num_features_used']
72
+ del r[0]['categorical_features_sampler']
73
+ pickle.dump(r, output)
74
+
75
+ _, _, _, style, temperature, _ = r
76
+
77
+ return r, model
78
+
79
+ """
80
+ ===============================
81
+ INTERNAL HELPER FUNCTIONS
82
+ ===============================
83
+ """
84
+
85
+ def evaluate_differentiable_model(model
86
+ , valid_datasets
87
+ , test_datasets
88
+ , train_datasets
89
+ , N_draws=100
90
+ , N_grad_steps=10
91
+ , eval_positions=None
92
+ , eval_positions_test=None
93
+ , bptt=100
94
+ , bptt_final=200
95
+ , style=None
96
+ , n_parallel_configurations=1
97
+ , device='cpu'
98
+ , selection_metric='auc'
99
+ , final_splits=[1, 2, 3, 4, 5]
100
+ , N_ensemble_configurations_list=[1, 5, 10, 20, 50, 100]
101
+ , **kwargs):
102
+ """
103
+ Evaluation function for diffable model evaluation. Returns a list of results.
104
+
105
+ :param model:
106
+ :param valid_datasets:
107
+ :param test_datasets:
108
+ :param train_datasets:
109
+ :param N_draws:
110
+ :param N_grad_steps:
111
+ :param eval_positions:
112
+ :param eval_positions_test:
113
+ :param bptt:
114
+ :param bptt_final:
115
+ :param style:
116
+ :param n_parallel_configurations:
117
+ :param device:
118
+ :param selection_metric:
119
+ :param final_splits:
120
+ :param N_ensemble_configurations_list:
121
+ :param kwargs:
122
+ :return:
123
+ """
124
+ torch.manual_seed(0)
125
+ np.random.seed(0)
126
+ random.seed(0)
127
+
128
+ diffable_metric = tabular_metrics.cross_entropy
129
+ evaluation_metric = tabular_metrics.auc_metric
130
+ if selection_metric in ('auc', 'roc'):
131
+ selection_metric_min_max = 'max'
132
+ selection_metric = tabular_metrics.auc_metric
133
+ evaluation_metric = selection_metric
134
+ elif selection_metric in ('ce', 'selection_metric'):
135
+ selection_metric_min_max = 'min'
136
+ selection_metric = tabular_metrics.cross_entropy
137
+ evaluation_metric = selection_metric
138
+
139
+ print('Diffable metric', diffable_metric, ' Selection metric', selection_metric, ' Evaluation metric',
140
+ evaluation_metric)
141
+ print('N PARALLEL CONFIGURATIONS', n_parallel_configurations)
142
+ print('eval_positions', eval_positions)
143
+
144
+ def evaluate_valid(style, softmax_temperature, results, results_tracked):
145
+ result_valid = eval_step(valid_datasets, style, softmax_temperature=softmax_temperature,
146
+ return_tensor=False, inference_mode=True, selection_metric=selection_metric,
147
+ evaluation_metric=evaluation_metric, eval_positions=eval_positions, bptt=bptt, model=model[2])
148
+ result_valid = [float(result_valid[f'mean_select_at_{pos}']) for pos in eval_positions]
149
+ results += [result_valid]
150
+ results_tracked += [np.nanmean(result_valid)]
151
+
152
+ model[2].to(device)
153
+ model[2].eval()
154
+
155
+ results_on_valid, results_on_valid_tracked = [], []
156
+ best_style, best_softmax_temperature = style, torch.cat(
157
+ [torch.tensor([0.0]).to(device) for n in range(0, n_parallel_configurations)], 0)
158
+ optimization_routes = []
159
+
160
+ best_style = torch.cat([draw_random_style(model[3], device).detach() for n in range(0, n_parallel_configurations)],
161
+ 0)
162
+ best_softmax_temperature = torch.cat([torch.tensor([0.0]).to(device) for n in range(0, n_parallel_configurations)],
163
+ 0)
164
+
165
+
166
+ for _ in tqdm(range(0, N_draws), desc='Iterate over Optimization initializations'): # Evaluates N hparam draws
167
+ style = torch.cat([draw_random_style(model[3], device).detach() for n in range(0, n_parallel_configurations)],
168
+ 0)
169
+ softmax_temperature = torch.cat([torch.tensor([0.0]).to(device) for n in range(0, n_parallel_configurations)],
170
+ 0)
171
+
172
+ evaluate_valid(style, softmax_temperature, results_on_valid, results_on_valid_tracked)
173
+
174
+ print(f'Draw --> Valid Selection metric: {results_on_valid[-1]}')
175
+
176
+ if N_grad_steps > 0:
177
+ gradient_optimize_result = gradient_optimize_style(model, style, N_grad_steps
178
+ , softmax_temperature=softmax_temperature
179
+ , model=model[2]
180
+ , train_datasets=train_datasets
181
+ , valid_datasets=valid_datasets
182
+ , selection_metric_min_max=selection_metric_min_max
183
+ , **kwargs)
184
+ optimization_routes += [gradient_optimize_result['optimization_route']]
185
+
186
+ evaluate_valid(gradient_optimize_result['best_style']
187
+ , gradient_optimize_result['best_temperature']
188
+ , results_on_valid, results_on_valid_tracked)
189
+
190
+ print(f'After diff --> Valid Selection metric: {results_on_valid[-1]}')
191
+
192
+ if selection_metric_min_max == 'min':
193
+ is_best = (results_on_valid_tracked[-1] <= min(results_on_valid_tracked))
194
+ else:
195
+ is_best = (results_on_valid_tracked[-1] >= max(results_on_valid_tracked))
196
+
197
+ if is_best or best_style is None:
198
+ best_style = gradient_optimize_result['best_style'].clone()
199
+ best_softmax_temperature = gradient_optimize_result['best_temperature'].clone()
200
+ torch.cuda.empty_cache()
201
+
202
+ def final_evaluation():
203
+ print('Running eval dataset with final params (no gradients)..')
204
+ print(best_style, best_softmax_temperature)
205
+ result_test = []
206
+ for N_ensemble_configurations in N_ensemble_configurations_list:
207
+ print(f'Running with {N_ensemble_configurations} ensemble_configurations')
208
+ kwargs['N_ensemble_configurations'] = N_ensemble_configurations
209
+ splits = []
210
+ for split in final_splits:
211
+ splits += [eval_step(test_datasets, best_style, softmax_temperature=best_softmax_temperature
212
+ , return_tensor=False, eval_positions=eval_positions_test,
213
+ bptt=bptt_final, inference_mode=True, split_number=split, model=model[2]
214
+ , selection_metric=selection_metric, evaluation_metric=evaluation_metric)]
215
+ result_test += [splits]
216
+
217
+ print('Running valid dataset with final params (no gradients)..')
218
+ result_valid = eval_step(valid_datasets, best_style, softmax_temperature=best_softmax_temperature
219
+ , return_tensor=False, eval_positions=eval_positions_test,
220
+ bptt=bptt_final, inference_mode=True, model=model[2]
221
+ , selection_metric=selection_metric, evaluation_metric=evaluation_metric)
222
+
223
+ return result_test, result_valid
224
+
225
+ result_test, result_valid = final_evaluation()
226
+
227
+ return result_test, result_valid, best_style, best_softmax_temperature, optimization_routes
228
+
229
+
230
+ def eval_step(ds, used_style, selection_metric, evaluation_metric, eval_positions, return_tensor=True, **kwargs):
231
+ def step():
232
+ return evaluate(datasets=ds,
233
+ method='transformer'
234
+ , overwrite=True
235
+ , style=used_style
236
+ , eval_positions=eval_positions
237
+ , metric_used=selection_metric
238
+ , save=False
239
+ , path_interfix=None
240
+ , base_path=None
241
+ , verbose=True
242
+ , **kwargs)
243
+
244
+ if return_tensor:
245
+ r = step()
246
+ else:
247
+ with torch.no_grad():
248
+ r = step()
249
+
250
+ calculate_score_per_method(selection_metric, 'select', r, ds, eval_positions, aggregator='mean')
251
+ calculate_score_per_method(evaluation_metric, 'eval', r, ds, eval_positions, aggregator='mean')
252
+
253
+ return r
254
+
255
+
256
+ def gradient_optimize_style(model, init_style, steps, softmax_temperature, train_datasets, valid_datasets, learning_rate=0.03, optimize_all=False,
257
+ limit_style=True, N_datasets_sampled=90, optimize_softmax_temperature=True, selection_metric_min_max='max', **kwargs):
258
+ """
259
+ Uses gradient based methods to optimize 'style' on the 'train_datasets' and uses stopping with 'valid_datasets'.
260
+
261
+ :param model:
262
+ :param init_style:
263
+ :param steps:
264
+ :param learning_rate:
265
+ :param softmax_temperature:
266
+ :param train_datasets:
267
+ :param valid_datasets:
268
+ :param optimize_all:
269
+ :param limit_style:
270
+ :param N_datasets_sampled:
271
+ :param optimize_softmax_temperature:
272
+ :param selection_metric_min_max:
273
+ :param kwargs:
274
+ :return:
275
+ """
276
+ grad_style = torch.nn.Parameter(init_style.detach(), requires_grad=True)
277
+
278
+ best_style, best_temperature, best_selection_metric, best_diffable_metric = grad_style.detach(), softmax_temperature.detach(), None, None
279
+ softmax_temperature = torch.nn.Parameter(softmax_temperature.detach(), requires_grad=optimize_softmax_temperature)
280
+ variables_to_optimize = model[2].parameters() if optimize_all else [grad_style, softmax_temperature]
281
+ optimizer = torch.optim.Adam(variables_to_optimize, lr=learning_rate)
282
+
283
+ optimization_route_selection, optimization_route_diffable = [], []
284
+ optimization_route_selection_valid, optimization_route_diffable_valid = [], []
285
+
286
+ def eval_opt(ds, return_tensor=True, inference_mode=False):
287
+ result = eval_step(ds, grad_style, softmax_temperature=softmax_temperature, return_tensor=return_tensor
288
+ , inference_mode=inference_mode, model=model[2], **kwargs)
289
+
290
+ diffable_metric = result['mean_metric']
291
+ selection_metric = result['mean_select']
292
+
293
+ return diffable_metric, selection_metric
294
+
295
+ def eval_all_datasets(datasets, propagate=True):
296
+ selection_metrics_this_step, diffable_metrics_this_step = [], []
297
+ for ds in datasets:
298
+ diffable_metric_train, selection_metric_train = eval_opt([ds], inference_mode=(not propagate))
299
+ if not torch.isnan(diffable_metric_train).any():
300
+ if propagate and diffable_metric_train.requires_grad == True:
301
+ diffable_metric_train.backward()
302
+ selection_metrics_this_step += [selection_metric_train]
303
+ diffable_metrics_this_step += [float(diffable_metric_train.detach().cpu().numpy())]
304
+ diffable_metric_train = np.nanmean(diffable_metrics_this_step)
305
+ selection_metric_train = np.nanmean(selection_metrics_this_step)
306
+
307
+ return diffable_metric_train, selection_metric_train
308
+
309
+ for t in tqdm(range(steps), desc='Iterate over Optimization steps'):
310
+ optimizer.zero_grad()
311
+
312
+ # Select subset of datasets
313
+ random.seed(t)
314
+ train_datasets_ = random.sample(train_datasets, N_datasets_sampled)
315
+
316
+ # Get score on train
317
+ diffable_metric_train, selection_metric_train = eval_all_datasets(train_datasets_, propagate=True)
318
+ optimization_route_selection += [float(selection_metric_train)]
319
+ optimization_route_diffable += [float(diffable_metric_train)]
320
+
321
+ # Get score on valid
322
+ diffable_metric_valid, selection_metric_valid = eval_all_datasets(valid_datasets, propagate=False)
323
+ optimization_route_selection_valid += [float(selection_metric_valid)]
324
+ optimization_route_diffable_valid += [float(diffable_metric_valid)]
325
+
326
+ is_best = (selection_metric_min_max == 'min' and best_selection_metric > selection_metric_valid)
327
+ is_best = is_best or (selection_metric_min_max == 'max' and best_selection_metric < selection_metric_valid)
328
+ if (best_selection_metric is None) or (not np.isnan(selection_metric_valid) and is_best):
329
+ print('New best', best_selection_metric, selection_metric_valid)
330
+ best_style = grad_style.detach().clone()
331
+ best_temperature = softmax_temperature.detach().clone()
332
+ best_selection_metric, best_diffable_metric = selection_metric_valid, diffable_metric_valid
333
+
334
+ optimizer.step()
335
+
336
+ if limit_style:
337
+ grad_style = grad_style.detach().clamp(-1.74, 1.74)
338
+
339
+ print(f'Valid: Diffable metric={diffable_metric_valid} Selection metric={selection_metric_valid};' +
340
+ f'Train: Diffable metric={diffable_metric_train} Selection metric={selection_metric_train}')
341
+
342
+ print(f'Return best:{best_style} {best_selection_metric}')
343
+ return {'best_style': best_style, 'best_temperature': best_temperature
344
+ , 'optimization_route': {'select': optimization_route_selection, 'loss': optimization_route_diffable,
345
+ 'test_select': optimization_route_selection_valid, 'test_loss': optimization_route_diffable_valid}}
TabPFN/encoders.py ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+ from utils import normalize_data
6
+ import torch.nn.functional as F
7
+ from torch.nn import TransformerEncoder, TransformerEncoderLayer
8
+
9
+
10
+ class StyleEncoder(nn.Module):
11
+ def __init__(self, em_size, hyperparameter_definitions):
12
+ super().__init__()
13
+ # self.embeddings = {}
14
+ self.em_size = em_size
15
+ # self.hyperparameter_definitions = {}
16
+ # for hp in hyperparameter_definitions:
17
+ # self.embeddings[hp] = nn.Linear(1, self.em_size)
18
+ # self.embeddings = nn.ModuleDict(self.embeddings)
19
+ self.embedding = nn.Linear(hyperparameter_definitions.shape[0], self.em_size)
20
+
21
+ def forward(self, hyperparameters): # T x B x num_features
22
+ # Make faster by using matrices
23
+ # sampled_embeddings = [torch.stack([
24
+ # self.embeddings[hp](torch.tensor([batch[hp]], device=self.embeddings[hp].weight.device, dtype=torch.float))
25
+ # for hp in batch
26
+ # ], -1).sum(-1) for batch in hyperparameters]
27
+ # return torch.stack(sampled_embeddings, 0)
28
+ return self.embedding(hyperparameters)
29
+
30
+
31
+ class _PositionalEncoding(nn.Module):
32
+ def __init__(self, d_model, dropout=0.):
33
+ super().__init__()
34
+ self.dropout = nn.Dropout(p=dropout)
35
+ self.d_model = d_model
36
+ self.device_test_tensor = nn.Parameter(torch.tensor(1.))
37
+
38
+ def forward(self, x):# T x B x num_features
39
+ assert self.d_model % x.shape[-1]*2 == 0
40
+ d_per_feature = self.d_model // x.shape[-1]
41
+ pe = torch.zeros(*x.shape, d_per_feature, device=self.device_test_tensor.device)
42
+ #position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
43
+ interval_size = 10
44
+ div_term = (1./interval_size) * 2*math.pi*torch.exp(torch.arange(0, d_per_feature, 2, device=self.device_test_tensor.device).float()*math.log(math.sqrt(2)))
45
+ #print(div_term/2/math.pi)
46
+ pe[..., 0::2] = torch.sin(x.unsqueeze(-1) * div_term)
47
+ pe[..., 1::2] = torch.cos(x.unsqueeze(-1) * div_term)
48
+ return self.dropout(pe).view(x.shape[0],x.shape[1],self.d_model)
49
+
50
+
51
+ Positional = lambda _, emsize: _PositionalEncoding(d_model=emsize)
52
+
53
+ class EmbeddingEncoder(nn.Module):
54
+ def __init__(self, num_features, em_size, num_embs=100):
55
+ super().__init__()
56
+ self.num_embs = num_embs
57
+ self.embeddings = nn.Embedding(num_embs * num_features, em_size, max_norm=True)
58
+ self.init_weights(.1)
59
+ self.min_max = (-2,+2)
60
+
61
+ @property
62
+ def width(self):
63
+ return self.min_max[1] - self.min_max[0]
64
+
65
+ def init_weights(self, initrange):
66
+ self.embeddings.weight.data.uniform_(-initrange, initrange)
67
+
68
+ def discretize(self, x):
69
+ split_size = self.width / self.num_embs
70
+ return (x - self.min_max[0] // split_size).int().clamp(0, self.num_embs - 1)
71
+
72
+ def forward(self, x): # T x B x num_features
73
+ x_idxs = self.discretize(x)
74
+ x_idxs += torch.arange(x.shape[-1], device=x.device).view(1, 1, -1) * self.num_embs
75
+ # print(x_idxs,self.embeddings.weight.shape)
76
+ return self.embeddings(x_idxs).mean(-2)
77
+
78
+
79
+ class Normalize(nn.Module):
80
+ def __init__(self, mean, std):
81
+ super().__init__()
82
+ self.mean = mean
83
+ self.std = std
84
+
85
+ def forward(self, x):
86
+ return (x-self.mean)/self.std
87
+
88
+
89
+ def get_normalized_uniform_encoder(encoder_creator):
90
+ """
91
+ This can be used to wrap an encoder that is fed uniform samples in [0,1] and normalizes these to 0 mean and 1 std.
92
+ For example, it can be used as `encoder_creator = get_normalized_uniform_encoder(encoders.Linear)`, now this can
93
+ be initialized with `encoder_creator(feature_dim, in_dim)`.
94
+ :param encoder:
95
+ :return:
96
+ """
97
+ return lambda in_dim, out_dim: nn.Sequential(Normalize(.5, math.sqrt(1/12)), encoder_creator(in_dim, out_dim))
98
+
99
+
100
+ Linear = nn.Linear
101
+ MLP = lambda num_features, emsize: nn.Sequential(nn.Linear(num_features+1,emsize*2),
102
+ nn.ReLU(),
103
+ nn.Linear(emsize*2,emsize))
104
+
105
+ class NanHandlingEncoder(nn.Module):
106
+ def __init__(self, num_features, emsize, keep_nans=True):
107
+ super().__init__()
108
+ self.num_features = 2 * num_features if keep_nans else num_features
109
+ self.emsize = emsize
110
+ self.keep_nans = keep_nans
111
+ self.layer = nn.Linear(self.num_features, self.emsize)
112
+
113
+ def forward(self, x):
114
+ if self.keep_nans:
115
+ x = torch.cat([torch.nan_to_num(x, nan=0.0), normalize_data(torch.isnan(x) * -1
116
+ + torch.logical_and(torch.isinf(x), torch.sign(x) == 1) * 1
117
+ + torch.logical_and(torch.isinf(x), torch.sign(x) == -1) * 2
118
+ )], -1)
119
+ else:
120
+ x = torch.nan_to_num(x, nan=0.0)
121
+ return self.layer(x)
122
+
123
+ class Linear(nn.Linear):
124
+ def __init__(self, num_features, emsize):
125
+ super().__init__(num_features, emsize)
126
+ self.num_features = num_features
127
+ self.emsize = emsize
128
+
129
+ def forward(self, x):
130
+ x = torch.nan_to_num(x, nan=0.0)
131
+ return super().forward(x)
132
+
133
+ class SequenceSpanningEncoder(nn.Module):
134
+ # Regular Encoder transforms Seq_len, B, S -> Seq_len, B, E attending only to last dimension
135
+ # This Encoder accesses the Seq_Len dimension additionally
136
+
137
+ # Why would we want this? We can learn normalization and embedding of features
138
+ # , this might be more important for e.g. categorical, ordinal feats, nan detection
139
+ # However maybe this can be easily learned through transformer as well?
140
+ # A problem is to make this work across any sequence length and be independent of ordering
141
+
142
+ # We could use average and maximum pooling and use those with a linear layer
143
+
144
+
145
+ # Another idea !! Similar to this we would like to encode features so that their number is variable
146
+ # We would like to embed features, also using knowledge of the features in the entire sequence
147
+
148
+ # We could use convolution or another transformer
149
+ # Convolution:
150
+
151
+ # Transformer/Conv across sequence dimension that encodes and normalizes features
152
+ # -> Transformer across feature dimension that encodes features to a constant size
153
+
154
+ # Conv with flexible features but no sequence info: S,B,F -(reshape)-> S*B,1,F
155
+ # -(Conv1d)-> S*B,N,F -(AvgPool,MaxPool)-> S*B,N,1 -> S,B,N
156
+ # This probably won't work since it's missing a way to recognize which feature is encoded
157
+
158
+ # Transformer with flexible features: S,B,F -> F,B*S,1 -> F2,B*S,1 -> S,B,F2
159
+
160
+ def __init__(self, num_features, em_size):
161
+ super().__init__()
162
+
163
+ raise NotImplementedError()
164
+ # Seq_len, B, S -> Seq_len, B, E
165
+ #
166
+ self.convs = torch.nn.ModuleList([nn.Conv1d(64 if i else 1, 64, 3) for i in range(5)])
167
+ # self.linear = nn.Linear(64, emsize)
168
+
169
+ class TransformerBasedFeatureEncoder(nn.Module):
170
+ def __init__(self, num_features, emsize):
171
+ super().__init__()
172
+
173
+ hidden_emsize = emsize
174
+ encoder = Linear(1, hidden_emsize)
175
+ n_out = emsize
176
+ nhid = 2*emsize
177
+ dropout =0.0
178
+ nhead=4
179
+ nlayers=4
180
+ model = nn.Transformer(nhead=nhead, num_encoder_layers=4, num_decoder_layers=4, d_model=1)
181
+
182
+ def forward(self, *input):
183
+ # S,B,F -> F,S*B,1 -> F2,S*B,1 -> S,B,F2
184
+ input = input.transpose()
185
+ self.model(input)
186
+
187
+ class Conv(nn.Module):
188
+ def __init__(self, input_size, emsize):
189
+ super().__init__()
190
+ self.convs = torch.nn.ModuleList([nn.Conv2d(64 if i else 1, 64, 3) for i in range(5)])
191
+ self.linear = nn.Linear(64,emsize)
192
+
193
+
194
+ def forward(self, x):
195
+ size = math.isqrt(x.shape[-1])
196
+ assert size*size == x.shape[-1]
197
+ x = x.reshape(*x.shape[:-1], 1, size, size)
198
+ for conv in self.convs:
199
+ if x.shape[-1] < 4:
200
+ break
201
+ x = conv(x)
202
+ x.relu_()
203
+ x = nn.AdaptiveAvgPool2d((1,1))(x).squeeze(-1).squeeze(-1)
204
+ return self.linear(x)
205
+
206
+
207
+
208
+
209
+ class CanEmb(nn.Embedding):
210
+ def __init__(self, num_features, num_embeddings: int, embedding_dim: int, *args, **kwargs):
211
+ assert embedding_dim % num_features == 0
212
+ embedding_dim = embedding_dim // num_features
213
+ super().__init__(num_embeddings, embedding_dim, *args, **kwargs)
214
+
215
+ def forward(self, x):
216
+ lx = x.long()
217
+ assert (lx == x).all(), "CanEmb only works with tensors of whole numbers"
218
+ x = super().forward(lx)
219
+ return x.view(*x.shape[:-2], -1)
220
+
221
+ def get_Canonical(num_classes):
222
+ return lambda num_features, emsize: CanEmb(num_features, num_classes, emsize)
223
+
224
+ def get_Embedding(num_embs_per_feature=100):
225
+ return lambda num_features, emsize: EmbeddingEncoder(num_features, emsize, num_embs=num_embs_per_feature)
TabPFN/initializers.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+ def get_NormalInitializer(std):
5
+ def initializer(m):
6
+ if isinstance(m, nn.Linear):
7
+ nn.init.normal_(m.weight, 0, std)
8
+ nn.init.normal_(m.bias, 0, std)
9
+ return initializer
TabPFN/layer.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import partial
2
+
3
+ from torch import nn
4
+ from torch.nn.modules.transformer import *
5
+ from torch.nn.modules.transformer import _get_activation_fn
6
+
7
+ from torch.utils.checkpoint import checkpoint
8
+
9
+
10
+ class TransformerEncoderLayer(Module):
11
+ r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
12
+ This standard encoder layer is based on the paper "Attention Is All You Need".
13
+ Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
14
+ Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
15
+ Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
16
+ in a different way during application.
17
+
18
+ Args:
19
+ d_model: the number of expected features in the input (required).
20
+ nhead: the number of heads in the multiheadattention models (required).
21
+ dim_feedforward: the dimension of the feedforward network model (default=2048).
22
+ dropout: the dropout value (default=0.1).
23
+ activation: the activation function of intermediate layer, relu or gelu (default=relu).
24
+ layer_norm_eps: the eps value in layer normalization components (default=1e-5).
25
+ batch_first: If ``True``, then the input and output tensors are provided
26
+ as (batch, seq, feature). Default: ``False``.
27
+
28
+ Examples::
29
+ >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
30
+ >>> src = torch.rand(10, 32, 512)
31
+ >>> out = encoder_layer(src)
32
+
33
+ Alternatively, when ``batch_first`` is ``True``:
34
+ >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
35
+ >>> src = torch.rand(32, 10, 512)
36
+ >>> out = encoder_layer(src)
37
+ """
38
+ __constants__ = ['batch_first']
39
+
40
+ def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu",
41
+ layer_norm_eps=1e-5, batch_first=False, pre_norm=False,
42
+ device=None, dtype=None, recompute_attn=False) -> None:
43
+ factory_kwargs = {'device': device, 'dtype': dtype}
44
+ super().__init__()
45
+ self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first,
46
+ **factory_kwargs)
47
+ # Implementation of Feedforward model
48
+ self.linear1 = Linear(d_model, dim_feedforward, **factory_kwargs)
49
+ self.dropout = Dropout(dropout)
50
+ self.linear2 = Linear(dim_feedforward, d_model, **factory_kwargs)
51
+
52
+ self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
53
+ self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
54
+ self.dropout1 = Dropout(dropout)
55
+ self.dropout2 = Dropout(dropout)
56
+ self.pre_norm = pre_norm
57
+ self.recompute_attn = recompute_attn
58
+
59
+ self.activation = _get_activation_fn(activation)
60
+
61
+ def __setstate__(self, state):
62
+ if 'activation' not in state:
63
+ state['activation'] = F.relu
64
+ super().__setstate__(state)
65
+
66
+ def forward(self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None) -> Tensor:
67
+ r"""Pass the input through the encoder layer.
68
+
69
+ Args:
70
+ src: the sequence to the encoder layer (required).
71
+ src_mask: the mask for the src sequence (optional).
72
+ src_key_padding_mask: the mask for the src keys per batch (optional).
73
+
74
+ Shape:
75
+ see the docs in Transformer class.
76
+ """
77
+ if self.pre_norm:
78
+ src_ = self.norm1(src)
79
+ else:
80
+ src_ = src
81
+ if isinstance(src_mask, tuple):
82
+ # global attention setup
83
+ assert not self.self_attn.batch_first
84
+ assert src_key_padding_mask is None
85
+
86
+ global_src_mask, trainset_src_mask, valset_src_mask = src_mask
87
+
88
+ num_global_tokens = global_src_mask.shape[0]
89
+ num_train_tokens = trainset_src_mask.shape[0]
90
+
91
+ global_tokens_src = src_[:num_global_tokens]
92
+ train_tokens_src = src_[num_global_tokens:num_global_tokens+num_train_tokens]
93
+ global_and_train_tokens_src = src_[:num_global_tokens+num_train_tokens]
94
+ eval_tokens_src = src_[num_global_tokens+num_train_tokens:]
95
+
96
+
97
+ attn = partial(checkpoint, self.self_attn) if self.recompute_attn else self.self_attn
98
+
99
+ global_tokens_src2 = attn(global_tokens_src, global_and_train_tokens_src, global_and_train_tokens_src, None, True, global_src_mask)[0]
100
+ train_tokens_src2 = attn(train_tokens_src, global_tokens_src, global_tokens_src, None, True, trainset_src_mask)[0]
101
+ eval_tokens_src2 = attn(eval_tokens_src, src_, src_,
102
+ None, True, valset_src_mask)[0]
103
+
104
+ src2 = torch.cat([global_tokens_src2, train_tokens_src2, eval_tokens_src2], dim=0)
105
+
106
+ else:
107
+ if self.recompute_attn:
108
+ src2 = checkpoint(self.self_attn, src_, src_, src_, src_key_padding_mask, True, src_mask)[0]
109
+ else:
110
+ src2 = self.self_attn(src_, src_, src_, attn_mask=src_mask,
111
+ key_padding_mask=src_key_padding_mask)[0]
112
+ src = src + self.dropout1(src2)
113
+ if not self.pre_norm:
114
+ src = self.norm1(src)
115
+
116
+ if self.pre_norm:
117
+ src_ = self.norm2(src)
118
+ else:
119
+ src_ = src
120
+ src2 = self.linear2(self.dropout(self.activation(self.linear1(src_))))
121
+ src = src + self.dropout2(src2)
122
+
123
+ if not self.pre_norm:
124
+ src = self.norm2(src)
125
+ return src
TabPFN/losses.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+ class CrossEntropyForMulticlassLoss(torch.nn.CrossEntropyLoss):
5
+ # This loss applies cross entropy after reducing the number of prediction
6
+ # dimensions to the number of classes in the target
7
+
8
+ # TODO: loss.item() doesn't work so the displayed losses are Nans
9
+ def __init__(self, num_classes, weight=None, size_average=None, ignore_index: int = -100,
10
+ reduce=None, reduction: str = 'mean', label_smoothing: float = 0.0) -> None:
11
+ super().__init__(size_average=size_average, reduce=reduce, reduction=reduction, ignore_index=ignore_index)
12
+ self.num_classes = num_classes
13
+
14
+ def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
15
+ loss = torch.zeros_like(input[:, :, 0])
16
+ for b in range(target.shape[1]):
17
+ l = super().forward(input[:, b, 0:len(torch.unique(target[:, b]))], target[:, b])
18
+ loss[:, b] += l
19
+ return loss.flatten()
20
+
21
+ def JointBCELossWithLogits(output, target):
22
+ # output shape: (S, B, NS) with NS = Number of sequences
23
+ # target shape: (S, B, SL)
24
+ # Loss = -log(mean_NS(prod_SL(p(target_SL, output_NS))))
25
+ # Here at the moment NS = SL
26
+ output = output.unsqueeze(-1).repeat(1, 1, 1, target.shape[-1]) # (S, B, NS, SL)
27
+ output = output.permute(2, 0, 1, 3) # (NS, S, B, SL)
28
+ print(target.shape, output.shape)
29
+ loss = (target * torch.sigmoid(output)) + ((1-target) * (1-torch.sigmoid(output)))
30
+ loss = loss.prod(-1)
31
+ loss = loss.mean(0)
32
+ loss = -torch.log(loss)
33
+ loss = loss.mean()
34
+ return loss
35
+
36
+ class ScaledSoftmaxCE(nn.Module):
37
+ def forward(self, x, label):
38
+ logits = x[..., :-10]
39
+ temp_scales = x[..., -10:]
40
+
41
+ logprobs = logits.softmax(-1)
TabPFN/model_builder.py ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from train import train, Losses
2
+ import priors
3
+ import encoders
4
+
5
+ from collections import defaultdict
6
+
7
+ from priors.utils import trunc_norm_sampler_f, gamma_sampler_f
8
+ from utils import get_uniform_single_eval_pos_sampler
9
+ import torch
10
+ import math
11
+
12
+ def save_model(model, path, filename, config_sample):
13
+ config_sample = {**config_sample}
14
+
15
+ def make_serializable(config_sample):
16
+ if isinstance(config_sample, dict):
17
+ config_sample = {k: make_serializable(config_sample[k]) for k in config_sample}
18
+ if isinstance(config_sample, list):
19
+ config_sample = [make_serializable(v) for v in config_sample]
20
+ if callable(config_sample):
21
+ config_sample = str(config_sample)
22
+ return config_sample
23
+
24
+ #if 'num_features_used' in config_sample:
25
+ # del config_sample['num_features_used']
26
+
27
+ #config_sample['num_classes_as_str'] = str(config_sample['num_classes'])
28
+ #del config_sample['num_classes']
29
+
30
+ config_sample = make_serializable(config_sample)
31
+
32
+ torch.save((model.state_dict(), None, config_sample), os.path.join(path, filename))
33
+
34
+
35
+ import subprocess as sp
36
+ import os
37
+
38
+ def get_gpu_memory():
39
+ command = "nvidia-smi"
40
+ memory_free_info = sp.check_output(command.split()).decode('ascii')
41
+ return memory_free_info
42
+
43
+
44
+ def load_model(path, filename, device, eval_positions, verbose):
45
+ # TODO: This function only restores evaluation functionality but training canät be continued. It is also not flexible.
46
+
47
+ model_state, optimizer_state, config_sample = torch.load(
48
+ os.path.join(path, filename), map_location='cpu')
49
+ if ('differentiable_hyperparameters' in config_sample
50
+ and 'prior_mlp_activations' in config_sample['differentiable_hyperparameters']):
51
+ config_sample['differentiable_hyperparameters']['prior_mlp_activations']['choice_values_used'] = config_sample[
52
+ 'differentiable_hyperparameters'][
53
+ 'prior_mlp_activations'][
54
+ 'choice_values']
55
+ config_sample['differentiable_hyperparameters']['prior_mlp_activations']['choice_values'] = [
56
+ torch.nn.Tanh for k in config_sample['differentiable_hyperparameters']['prior_mlp_activations']['choice_values']]
57
+
58
+ config_sample['categorical_features_sampler'] = lambda: lambda x: ([], [], [])
59
+ config_sample['num_features_used_in_training'] = config_sample['num_features_used']
60
+ config_sample['num_features_used'] = lambda: config_sample['num_features']
61
+ config_sample['num_classes_in_training'] = config_sample['num_classes']
62
+ config_sample['num_classes'] = 2
63
+ config_sample['batch_size_in_training'] = config_sample['batch_size']
64
+ config_sample['batch_size'] = 1
65
+ config_sample['bptt_in_training'] = config_sample['bptt']
66
+ config_sample['bptt'] = 10
67
+ config_sample['bptt_extra_samples_in_training'] = config_sample['bptt_extra_samples']
68
+ config_sample['bptt_extra_samples'] = None
69
+
70
+ #print('Memory', str(get_gpu_memory()))
71
+
72
+ model = get_model(config_sample, device=device, should_train=False, verbose=verbose)
73
+ module_prefix = 'module.'
74
+ model_state = {k.replace(module_prefix, ''): v for k, v in model_state.items()}
75
+ model[2].load_state_dict(model_state)
76
+ model[2].to(device)
77
+
78
+ return model, config_sample
79
+
80
+ def fix_loaded_config_sample(loaded_config_sample, config):
81
+ def copy_to_sample(*k):
82
+ t,s = loaded_config_sample, config
83
+ for k_ in k[:-1]:
84
+ t = t[k_]
85
+ s = s[k_]
86
+ t[k[-1]] = s[k[-1]]
87
+ copy_to_sample('num_features_used')
88
+ copy_to_sample('num_classes')
89
+ copy_to_sample('differentiable_hyperparameters','prior_mlp_activations','choice_values')
90
+
91
+ def load_config_sample(path, template_config):
92
+ model_state, optimizer_state, loaded_config_sample = torch.load(path, map_location='cpu')
93
+ fix_loaded_config_sample(loaded_config_sample, template_config)
94
+ return loaded_config_sample
95
+
96
+ def get_default_spec(test_datasets, valid_datasets):
97
+ bptt = 10000
98
+ eval_positions = [1000, 2000, 3000, 4000, 5000] # list(2 ** np.array([4, 5, 6, 7, 8, 9, 10, 11, 12]))
99
+ max_features = max([X.shape[1] for (_, X, _, _, _, _) in test_datasets] + [X.shape[1] for (_, X, _, _, _, _) in valid_datasets])
100
+ max_splits = 5
101
+
102
+ return bptt, eval_positions, max_features, max_splits
103
+
104
+ def get_mlp_prior_hyperparameters(config):
105
+ config = {hp: (list(config[hp].values())[0]) if type(config[hp]) is dict else config[hp] for hp in config}
106
+
107
+ if "prior_sigma_gamma_k" in config:
108
+ sigma_sampler = gamma_sampler_f(config["prior_sigma_gamma_k"], config["prior_sigma_gamma_theta"])
109
+ config['init_std'] = sigma_sampler
110
+ if "prior_noise_std_gamma_k" in config:
111
+ noise_std_sampler = gamma_sampler_f(config["prior_noise_std_gamma_k"], config["prior_noise_std_gamma_theta"])
112
+ config['noise_std'] = noise_std_sampler
113
+
114
+ return config
115
+
116
+
117
+ def get_gp_mix_prior_hyperparameters(config):
118
+ return {'lengthscale_concentration': config["prior_lengthscale_concentration"],
119
+ 'nu': config["prior_nu"],
120
+ 'outputscale_concentration': config["prior_outputscale_concentration"],
121
+ 'categorical_data': config["prior_y_minmax_norm"],
122
+ 'y_minmax_norm': config["prior_lengthscale_concentration"],
123
+ 'noise_concentration': config["prior_noise_concentration"],
124
+ 'noise_rate': config["prior_noise_rate"]}
125
+
126
+ def get_gp_prior_hyperparameters(config):
127
+ return {hp: (list(config[hp].values())[0]) if type(config[hp]) is dict else config[hp] for hp in config}
128
+
129
+
130
+ def get_meta_gp_prior_hyperparameters(config):
131
+ config = {hp: (list(config[hp].values())[0]) if type(config[hp]) is dict else config[hp] for hp in config}
132
+
133
+ if "outputscale_mean" in config:
134
+ outputscale_sampler = trunc_norm_sampler_f(config["outputscale_mean"]
135
+ , config["outputscale_mean"] * config["outputscale_std_f"])
136
+ config['outputscale'] = outputscale_sampler
137
+ if "lengthscale_mean" in config:
138
+ lengthscale_sampler = trunc_norm_sampler_f(config["lengthscale_mean"],
139
+ config["lengthscale_mean"] * config["lengthscale_std_f"])
140
+ config['lengthscale'] = lengthscale_sampler
141
+
142
+ return config
143
+
144
+
145
+ def get_model(config, device, should_train=True, verbose=False, state_dict=None, epoch_callback=None):
146
+ extra_kwargs = {}
147
+ verbose_train, verbose_prior = verbose >= 1, verbose >= 2
148
+ config['verbose'] = verbose_prior
149
+
150
+ if 'aggregate_k_gradients' not in config or config['aggregate_k_gradients'] is None:
151
+ config['aggregate_k_gradients'] = math.ceil(config['batch_size'] * ((config['nlayers'] * config['emsize'] * config['bptt'] * config['bptt']) / 10824640000))
152
+
153
+ config['num_steps'] = math.ceil(config['num_steps'] * config['aggregate_k_gradients'])
154
+ config['batch_size'] = math.ceil(config['batch_size'] / config['aggregate_k_gradients'])
155
+ config['recompute_attn'] = config['recompute_attn'] if 'recompute_attn' in config else False
156
+
157
+ def make_get_batch(model_proto, **extra_kwargs):
158
+ extra_kwargs = defaultdict(lambda: None, **extra_kwargs)
159
+ return (lambda batch_size, seq_len, num_features, hyperparameters
160
+ , device, model_proto=model_proto, get_batch=extra_kwargs['get_batch']
161
+ , prior_bag_priors=extra_kwargs['prior_bag_priors']: model_proto.get_batch(
162
+ batch_size=batch_size
163
+ , seq_len=seq_len
164
+ , device=device
165
+ , get_batch=get_batch
166
+ , hyperparameters=hyperparameters
167
+ , num_features=num_features))
168
+
169
+ if config['prior_type'] == 'prior_bag':
170
+ # Prior bag combines priors
171
+ get_batch_gp = make_get_batch(priors.fast_gp)
172
+ get_batch_mlp = make_get_batch(priors.mlp)
173
+ if 'flexible' in config and config['flexible']:
174
+ get_batch_gp = make_get_batch(priors.flexible_categorical, **{'get_batch': get_batch_gp})
175
+ get_batch_mlp = make_get_batch(priors.flexible_categorical, **{'get_batch': get_batch_mlp})
176
+ prior_bag_hyperparameters = {'prior_bag_get_batch': (get_batch_gp, get_batch_mlp)
177
+ , 'prior_bag_exp_weights_1': 2.0}
178
+ prior_hyperparameters = {**get_mlp_prior_hyperparameters(config), **get_gp_prior_hyperparameters(config)
179
+ , **prior_bag_hyperparameters}
180
+ model_proto = priors.prior_bag
181
+ else:
182
+ if config['prior_type'] == 'mlp':
183
+ prior_hyperparameters = get_mlp_prior_hyperparameters(config)
184
+ model_proto = priors.mlp
185
+ elif config['prior_type'] == 'gp':
186
+ prior_hyperparameters = get_gp_prior_hyperparameters(config)
187
+ model_proto = priors.fast_gp
188
+ elif config['prior_type'] == 'gp_mix':
189
+ prior_hyperparameters = get_gp_mix_prior_hyperparameters(config)
190
+ model_proto = priors.fast_gp_mix
191
+ else:
192
+ raise Exception()
193
+
194
+ if 'flexible' in config and config['flexible']:
195
+ get_batch_base = make_get_batch(model_proto)
196
+ extra_kwargs['get_batch'] = get_batch_base
197
+ model_proto = priors.flexible_categorical
198
+
199
+ use_style = False
200
+
201
+ if 'differentiable' in config and config['differentiable']:
202
+ get_batch_base = make_get_batch(model_proto, **extra_kwargs)
203
+ extra_kwargs = {'get_batch': get_batch_base, 'differentiable_hyperparameters': config['differentiable_hyperparameters']}
204
+ model_proto = priors.differentiable_prior
205
+ use_style = True
206
+ print(f"Using style prior: {use_style}")
207
+
208
+ if (('nan_prob_no_reason' in config and config['nan_prob_no_reason'] > 0.0) or
209
+ ('nan_prob_a_reason' in config and config['nan_prob_a_reason'] > 0.0) or
210
+ ('nan_prob_unknown_reason' in config and config['nan_prob_unknown_reason'] > 0.0)):
211
+ encoder = encoders.NanHandlingEncoder
212
+ else:
213
+ encoder = encoders.Linear
214
+
215
+ num_outputs = config['num_outputs'] if 'num_outputs' in config else 1
216
+ if config['max_num_classes'] == 2:
217
+ if 'joint_loss' in config and config['joint_loss']:
218
+ loss = JointBCELossWithLogits
219
+ else:
220
+ loss = Losses.bce
221
+ elif config['max_num_classes'] > 2:
222
+ loss = Losses.ce(torch.ones((config['max_num_classes'])))
223
+ else:
224
+ loss = BarDistribution(borders=get_bucket_limits(500, full_range=(-10, 10)))
225
+
226
+ aggregate_k_gradients = 1 if 'aggregate_k_gradients' not in config else config['aggregate_k_gradients']
227
+ check_is_compatible = False if 'multiclass_loss_type' not in config else (config['multiclass_loss_type'] == 'compatible')
228
+ config['multiclass_type'] = config['multiclass_type'] if 'multiclass_type' in config else 'rank'
229
+ config['mix_activations'] = config['mix_activations'] if 'mix_activations' in config else False
230
+
231
+ config['bptt_extra_samples'] = config['bptt_extra_samples'] if 'bptt_extra_samples' in config else None
232
+ config['eval_positions'] = [int(config['bptt'] * 0.95)] if config['bptt_extra_samples'] is None else [int(config['bptt'])]
233
+
234
+ epochs = 0 if not should_train else config['epochs']
235
+ model = train(model_proto.DataLoader
236
+ , loss
237
+ , encoder
238
+ , style_encoder_generator = encoders.StyleEncoder if use_style else None
239
+ , emsize=config['emsize']
240
+ , nhead=config['nhead']
241
+ , y_encoder_generator= encoders.get_Canonical(config['max_num_classes']) if config.get('canonical_y_encoder', False) else encoders.Linear
242
+ , pos_encoder_generator=None
243
+ , batch_size=config['batch_size']
244
+ , nlayers=config['nlayers']
245
+ , nhid=config['emsize'] * config['nhid_factor']
246
+ , epochs=epochs
247
+ , total_available_time_in_s=config.get('total_available_time_in_s', None)
248
+ , warmup_epochs=20
249
+ , bptt=config['bptt']
250
+ , gpu_device=device
251
+ , dropout=config['dropout']
252
+ , steps_per_epoch=config['num_steps']
253
+ , single_eval_pos_gen=get_uniform_single_eval_pos_sampler(config['bptt'])
254
+ , load_weights_from_this_state_dict=state_dict
255
+ , aggregate_k_gradients=aggregate_k_gradients
256
+ , check_is_compatible=check_is_compatible
257
+ , recompute_attn=config['recompute_attn']
258
+ , epoch_callback=epoch_callback
259
+ , bptt_extra_samples = config['bptt_extra_samples']
260
+ , extra_prior_kwargs_dict={
261
+ 'num_features': config['num_features']
262
+ , 'fuse_x_y': False
263
+ , 'hyperparameters': prior_hyperparameters
264
+ , 'num_outputs':num_outputs
265
+ , 'dynamic_batch_size': 1 if ('num_global_att_tokens' in config and config['num_global_att_tokens']) else 2
266
+ , **extra_kwargs
267
+ }
268
+ , lr=config['lr']
269
+ , verbose=verbose_train,
270
+ weight_decay=config.get('weight_decay', 0.0),
271
+ normalize_labels=True)
272
+
273
+ return model
TabPFN/models_diff/gp_ablation_model.cpkt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7b0c8febc553cca3fdee265b5a1cd7567dbf83da855969940be4707a9218ffb
3
+ size 69460013
TabPFN/models_diff/prior_diff_real_checkpoint_n_8x_lr0.0003_epoch_49.cpkt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dae97f45bd53d719fc2b23fac4ec55eab16d63892196d939b1bb1c3b408be242
3
+ size 103616779
TabPFN/notebook_utils.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from pathlib import Path
3
+
4
+ import io
5
+ import torch
6
+ import pickle
7
+
8
+ def print_models(base_path, model_string):
9
+ print(model_string)
10
+
11
+ for i in range(80):
12
+ for e in range(50):
13
+ exists = Path(os.path.join(base_path, f'models_diff/prior_diff_real_checkpoint{model_string}_n_{i}_epoch_{e}.cpkt')).is_file()
14
+ if exists:
15
+ print(os.path.join(base_path, f'models_diff/prior_diff_real_checkpoint{model_string}_n_{i}_epoch_{e}.cpkt'))
16
+ print()
17
+
18
+ class CustomUnpickler(pickle.Unpickler):
19
+ def find_class(self, module, name):
20
+ if name == 'Manager':
21
+ from settings import Manager
22
+ return Manager
23
+ try:
24
+ return self.find_class_cpu(module, name)
25
+ except:
26
+ return None
27
+
28
+ def find_class_cpu(self, module, name):
29
+ if module == 'torch.storage' and name == '_load_from_bytes':
30
+ return lambda b: torch.load(io.BytesIO(b), map_location='cpu')
31
+ else:
32
+ return super().find_class(module, name)
TabPFN/positional_encodings.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ from torch import nn
5
+
6
+
7
+ # Protocol for positonal encodings.
8
+ # __init__(d_model, max_len=..[, more optionals])
9
+ # forward(x: (seq_len, bs, d_model)) -> Tensor of shape (*x.shape[:2],d_model) containing pos. embeddings
10
+
11
+
12
+ class NoPositionalEncoding(nn.Module):
13
+ def __init__(self, d_model, max_len=None):
14
+ super(NoPositionalEncoding, self).__init__()
15
+ pass
16
+
17
+ def forward(self, x):
18
+ return x #* math.sqrt(x.shape[-1])
19
+
20
+
21
+ class PositionalEncoding(nn.Module):
22
+ def __init__(self, d_model, max_len=5000):
23
+ super(PositionalEncoding, self).__init__()
24
+ pe = torch.zeros(max_len, d_model)
25
+ position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
26
+ div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
27
+ pe[:, 0::2] = torch.sin(position * div_term)
28
+ pe[:, 1::2] = torch.cos(position * div_term)
29
+ pe = pe.unsqueeze(0).transpose(0, 1)
30
+ self.register_buffer('pe', pe)
31
+
32
+ def forward(self, x):
33
+ x = self.pe[:x.size(0), :] + x # * math.sqrt(x.shape[-1])
34
+ return x
35
+
36
+
37
+ class LearnedPositionalEncoding(nn.Module):
38
+ def __init__(self, d_model, max_len=5000):
39
+ super(LearnedPositionalEncoding, self).__init__()
40
+ self.max_seq_len = max_len
41
+ #self.positional_embeddings = nn.Embedding(max_len, d_model)
42
+ self.positional_embeddings = nn.Parameter(torch.empty(max_len, d_model))
43
+ nn.init.normal_(self.positional_embeddings, mean=0, std=d_model ** -0.5)
44
+
45
+ def forward(self, x):
46
+ seq_len, bs, d_model = x.shape
47
+ assert seq_len <= len(self.positional_embeddings), 'seq_len can be at most max_len.'
48
+ pos_emb = self.positional_embeddings[:seq_len]
49
+ return pos_emb.unsqueeze(1).expand(seq_len, bs, d_model) + x #* math.sqrt(x.shape[-1])
50
+
51
+
52
+ class PairedScrambledPositionalEncodings(LearnedPositionalEncoding):
53
+ # TODO check whether it is a problem to use the same perm. for full batch
54
+ def forward(self, x):
55
+ seq_len, bs, d_model = x.shape
56
+ assert seq_len <= len(self.positional_embeddings), 'seq_len can be at most max_len.'
57
+ assert len(self.positional_embeddings) % 2 == 0, 'Please specify an even max_len.'
58
+
59
+ paired_embs = self.positional_embeddings.view(len(self.positional_embeddings), -1, 2)
60
+ pos_emb = paired_embs[torch.randperm(len(paired_embs))].view(*self.positional_embeddings.shape)[:seq_len]
61
+
62
+ return pos_emb.unsqueeze(1).expand(seq_len, bs, d_model) + x #* math.sqrt(x.shape[-1])
63
+
64
+
65
+
66
+
67
+
68
+
69
+
70
+
TabPFN/prior_tuning_result.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24d2189bbc836aeea888cf6c540f2c1b45b5351822931189e8bf10a0bc80a0b6
3
+ size 18668851
TabPFN/priors/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from . import fast_gp, mlp, flexible_categorical, differentiable_prior, prior_bag
2
+
3
+
4
+
TabPFN/priors/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (286 Bytes). View file
 
TabPFN/priors/__pycache__/differentiable_prior.cpython-39.pyc ADDED
Binary file (15.6 kB). View file
 
TabPFN/priors/__pycache__/fast_gp.cpython-39.pyc ADDED
Binary file (4.5 kB). View file
 
TabPFN/priors/__pycache__/flexible_categorical.cpython-39.pyc ADDED
Binary file (8.77 kB). View file
 
TabPFN/priors/__pycache__/mlp.cpython-39.pyc ADDED
Binary file (6.78 kB). View file
 
TabPFN/priors/__pycache__/prior.cpython-39.pyc ADDED
Binary file (370 Bytes). View file
 
TabPFN/priors/__pycache__/prior_bag.cpython-39.pyc ADDED
Binary file (1.52 kB). View file
 
TabPFN/priors/__pycache__/utils.cpython-39.pyc ADDED
Binary file (7.71 kB). View file
 
TabPFN/priors/differentiable_prior.py ADDED
@@ -0,0 +1,293 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import math
4
+
5
+ from .utils import get_batch_to_dataloader
6
+ from utils import default_device
7
+ from .utils import order_by_y, normalize_by_used_features_f
8
+
9
+ from .utils import trunc_norm_sampler_f, beta_sampler_f, gamma_sampler_f, uniform_sampler_f, zipf_sampler_f, scaled_beta_sampler_f, uniform_int_sampler_f
10
+
11
+
12
+ def unpack_dict_of_tuples(d):
13
+ # Returns list of dicts where each dict i contains values of tuple position i
14
+ # {'a': (1,2), 'b': (3,4)} -> [{'a': 1, 'b': 3}, {'a': 2, 'b': 4}]
15
+ return [dict(zip(d.keys(), v)) for v in list(zip(*list(d.values())))]
16
+
17
+ class DifferentiableHyperparameter(nn.Module):
18
+ ## We can sample this and get a hyperparameter value and a normalized hyperparameter indicator
19
+ def __init__(self, distribution, embedding_dim, device, **args):
20
+ super(DifferentiableHyperparameter, self).__init__()
21
+
22
+ self.distribution = distribution
23
+ self.embedding_dim = embedding_dim
24
+ self.device=device
25
+ for key in args:
26
+ setattr(self, key, args[key])
27
+
28
+ def get_sampler():
29
+ #if self.distribution == "beta":
30
+ # return beta_sampler_f(self.a, self.b), 0, 1
31
+ #elif self.distribution == "gamma":
32
+ # return gamma_sampler_f(self.a, self.b), 0, 1
33
+ #elif self.distribution == "beta_int":
34
+ # return scaled_beta_sampler_f(self.a, self.b, self.scale, self.min), self.scale + self.min, self.min, self.a / (self.a + self.b)
35
+ if self.distribution == "uniform":
36
+ if not hasattr(self, 'sample'):
37
+ return uniform_sampler_f(self.min, self.max), self.min, self.max, (self.max+self.min) / 2, math.sqrt(1/12*(self.max-self.min)*(self.max-self.min))
38
+ else:
39
+ return lambda: self.sample, self.min, self.max, None, None
40
+ elif self.distribution == "uniform_int":
41
+ return uniform_int_sampler_f(self.min, self.max), self.min, self.max, (self.max+self.min) / 2, math.sqrt(1/12*(self.max-self.min)*(self.max-self.min))
42
+
43
+ if self.distribution.startswith("meta"):
44
+ self.hparams = {}
45
+ def sample_meta(f):
46
+ indicators, passed = unpack_dict_of_tuples({hp: self.hparams[hp]() for hp in self.hparams})
47
+ # sampled_embeddings = list(itertools.chain.from_iterable([sampled_embeddings[k] for k in sampled_embeddings]))
48
+ meta_passed = f(**passed)
49
+ return indicators, meta_passed
50
+
51
+ args_passed = {'device': device, 'embedding_dim': embedding_dim}
52
+ if self.distribution == "meta_beta":
53
+ ## Truncated normal where std and mean are drawn randomly logarithmically scaled
54
+ if hasattr(self, 'b') and hasattr(self, 'k'):
55
+ self.hparams = {'b': lambda: (None, self.b), 'k': lambda: (None, self.k)}
56
+ else:
57
+ self.hparams = {"b": DifferentiableHyperparameter(distribution="uniform", min=self.min
58
+ , max=self.max, **args_passed)
59
+ , "k": DifferentiableHyperparameter(distribution="uniform", min=self.min
60
+ , max=self.max, **args_passed)}
61
+ def make_beta(b, k):
62
+ return lambda b=b, k=k: self.scale * beta_sampler_f(b, k)()
63
+ self.sampler = lambda make_beta=make_beta : sample_meta(make_beta)
64
+ elif self.distribution == "meta_trunc_norm_log_scaled":
65
+ # these choices are copied down below, don't change these without changing `replace_differentiable_distributions`
66
+ self.min_std = self.min_std if hasattr(self, 'min_std') else 0.001
67
+ self.max_std = self.max_std if hasattr(self, 'max_std') else self.max_mean
68
+ ## Truncated normal where std and mean are drawn randomly logarithmically scaled
69
+ if not hasattr(self, 'log_mean'):
70
+ self.hparams = {"log_mean": DifferentiableHyperparameter(distribution="uniform", min=math.log(self.min_mean)
71
+ , max=math.log(self.max_mean), **args_passed)
72
+ , "log_std": DifferentiableHyperparameter(distribution="uniform", min=math.log(self.min_std)
73
+ , max=math.log(self.max_std), **args_passed)}
74
+ else:
75
+ self.hparams = {'log_mean': lambda: (None, self.log_mean), 'log_std': lambda: (None, self.log_std)}
76
+ def make_trunc_norm(log_mean, log_std):
77
+ return ((lambda : self.lower_bound + round(trunc_norm_sampler_f(math.exp(log_mean), math.exp(log_std))())) if self.round
78
+ else (lambda: self.lower_bound + trunc_norm_sampler_f(math.exp(log_mean), math.exp(log_std))()))
79
+
80
+ self.sampler = lambda make_trunc_norm=make_trunc_norm: sample_meta(make_trunc_norm)
81
+ elif self.distribution == "meta_trunc_norm":
82
+ self.min_std = self.min_std if hasattr(self, 'min_std') else 0
83
+ self.max_std = self.max_std if hasattr(self, 'max_std') else self.max_mean
84
+ self.hparams = {"mean": DifferentiableHyperparameter(distribution="uniform", min=self.min_mean
85
+ , max=self.max_mean, **args_passed)
86
+ , "std": DifferentiableHyperparameter(distribution="uniform", min=self.min_std
87
+ , max=self.max_std, **args_passed)}
88
+ def make_trunc_norm(mean, std):
89
+ return ((lambda: self.lower_bound + round(
90
+ trunc_norm_sampler_f(math.exp(mean), math.exp(std))())) if self.round
91
+ else (
92
+ lambda make_trunc_norm=make_trunc_norm: self.lower_bound + trunc_norm_sampler_f(math.exp(mean), math.exp(std))()))
93
+ self.sampler = lambda : sample_meta(make_trunc_norm)
94
+ elif self.distribution == "meta_choice":
95
+ if hasattr(self, 'choice_1_weight'):
96
+ self.hparams = {f'choice_{i}_weight': lambda: (None, getattr(self, f'choice_{i}_weight')) for i in range(1, len(self.choice_values))}
97
+ else:
98
+ self.hparams = {f"choice_{i}_weight": DifferentiableHyperparameter(distribution="uniform", min=-5.0
99
+ , max=6.0, **args_passed) for i in range(1, len(self.choice_values))}
100
+ def make_choice(**choices):
101
+ weights = torch.softmax(torch.tensor([1.0] + [choices[i] for i in choices], dtype=torch.float), 0) # create a tensor of weights
102
+ sample = torch.multinomial(weights, 1, replacement=True).numpy()[0]
103
+ return self.choice_values[sample]
104
+
105
+ self.sampler = lambda make_choice=make_choice: sample_meta(make_choice)
106
+ elif self.distribution == "meta_choice_mixed":
107
+ if hasattr(self, 'choice_1_weight'):
108
+ self.hparams = {f'choice_{i}_weight': lambda: (None, getattr(self, f'choice_{i}_weight')) for i in range(1, len(self.choice_values))}
109
+ else:
110
+ self.hparams = {f"choice_{i}_weight": DifferentiableHyperparameter(distribution="uniform", min=-5.0
111
+ , max=6.0, **args_passed) for i in range(1, len(self.choice_values))}
112
+ def make_choice(**choices):
113
+ weights = torch.softmax(torch.tensor([1.0] + [choices[i] for i in choices], dtype=torch.float), 0) # create a tensor of weights
114
+ def sample():
115
+ s = torch.multinomial(weights, 1, replacement=True).numpy()[0]
116
+ return self.choice_values[s]()
117
+ return lambda: sample
118
+
119
+ self.sampler = lambda make_choice=make_choice: sample_meta(make_choice)
120
+ else:
121
+ def return_two(x, min, max, mean, std):
122
+ # Returns (a hyperparameter value, and an indicator value passed to the model)
123
+ if mean is not None:
124
+ ind = (x-mean)/std#(2 * (x-min) / (max-min) - 1)
125
+ else:
126
+ ind = None
127
+ return ind, x # normalize indicator to [-1, 1]
128
+ # def sample_standard(sampler_f, embedding):
129
+ # s = torch.tensor([sampler_f()], device = self.device)
130
+ # return s, embedding(s)
131
+ self.sampler_f, self.sampler_min, self.sampler_max, self.sampler_mean, self.sampler_std = get_sampler()
132
+ self.sampler = lambda : return_two(self.sampler_f(), min=self.sampler_min, max=self.sampler_max
133
+ , mean=self.sampler_mean, std=self.sampler_std)
134
+ # self.embedding_layer = nn.Linear(1, self.embedding_dim, device=self.device)
135
+ # self.embed = lambda x : self.embedding_layer(
136
+ # (x - self.sampler_min) / (self.sampler_max - self.sampler_min))
137
+ #self.sampler = lambda : sample_standard(self.sampler_f, self.embedding)
138
+
139
+
140
+ def forward(self):
141
+ s, s_passed = self.sampler()
142
+ return s, s_passed
143
+
144
+
145
+
146
+ class DifferentiableHyperparameterList(nn.Module):
147
+ def __init__(self, hyperparameters, embedding_dim, device):
148
+ super().__init__()
149
+
150
+ self.device = device
151
+ hyperparameters = {k: v for (k, v) in hyperparameters.items() if v}
152
+ self.hyperparameters = nn.ModuleDict({hp: DifferentiableHyperparameter(embedding_dim = embedding_dim
153
+ , name = hp
154
+ , device = device, **hyperparameters[hp]) for hp in hyperparameters})
155
+ def get_hyperparameter_info(self):
156
+ sampled_hyperparameters_f, sampled_hyperparameters_keys = [], []
157
+ def append_hp(hp_key, hp_val):
158
+ sampled_hyperparameters_keys.append(hp_key)
159
+ # Function remaps hyperparameters from [-1, 1] range to true value
160
+ s_min, s_max, s_mean, s_std = hp_val.sampler_min, hp_val.sampler_max, hp_val.sampler_mean, hp_val.sampler_std
161
+ sampled_hyperparameters_f.append((lambda x: (x-s_mean)/s_std, lambda y : (y * s_std)+s_mean))
162
+ #sampled_hyperparameters_f.append(((lambda x: ((x - s_min) / (s_max - s_min) * (2) - 1)
163
+ # , (lambda y: ((y + 1) * (1 / 2) * (s_max - s_min) + s_min))))
164
+ for hp in self.hyperparameters:
165
+ hp_val = self.hyperparameters[hp]
166
+ if hasattr(hp_val, 'hparams'):
167
+ for hp_ in hp_val.hparams:
168
+ append_hp(f'{hp}_{hp_}', hp_val.hparams[hp_])
169
+ else:
170
+ append_hp(hp, hp_val)
171
+
172
+
173
+ return sampled_hyperparameters_keys, sampled_hyperparameters_f
174
+
175
+ def sample_parameter_object(self):
176
+ sampled_hyperparameters, s_passed = {}, {}
177
+ for hp in self.hyperparameters:
178
+ sampled_hyperparameters_, s_passed_ = self.hyperparameters[hp]()
179
+ s_passed[hp] = s_passed_
180
+ if isinstance(sampled_hyperparameters_, dict):
181
+ sampled_hyperparameters_ = {hp + '_' + str(key): val for key, val in sampled_hyperparameters_.items()}
182
+ sampled_hyperparameters.update(sampled_hyperparameters_)
183
+ else:
184
+ sampled_hyperparameters[hp] = sampled_hyperparameters_
185
+
186
+ # s_passed contains the values passed to the get_batch function
187
+ # sampled_hyperparameters contains the indicator of the sampled value, i.e. only number that describe the sampled object
188
+ return s_passed, sampled_hyperparameters#self.pack_parameter_object(sampled_embeddings)
189
+
190
+ class DifferentiablePrior(torch.nn.Module):
191
+ def __init__(self, get_batch, hyperparameters, differentiable_hyperparameters, args):
192
+ super(DifferentiablePrior, self).__init__()
193
+
194
+ self.h = hyperparameters
195
+ self.args = args
196
+ self.get_batch = get_batch
197
+ self.differentiable_hyperparameters = DifferentiableHyperparameterList(differentiable_hyperparameters
198
+ , embedding_dim=self.h['emsize']
199
+ , device=self.args['device'])
200
+
201
+ def forward(self):
202
+ # Sample hyperparameters
203
+ sampled_hyperparameters_passed, sampled_hyperparameters_indicators = self.differentiable_hyperparameters.sample_parameter_object()
204
+
205
+ hyperparameters = {**self.h, **sampled_hyperparameters_passed}
206
+ x, y, y_ = self.get_batch(hyperparameters=hyperparameters, **self.args)
207
+
208
+ return x, y, y_, sampled_hyperparameters_indicators
209
+
210
+
211
+ # TODO: Make this a class that keeps objects
212
+ @torch.no_grad()
213
+ def get_batch(batch_size, seq_len, num_features, get_batch
214
+ , device=default_device, differentiable_hyperparameters={}
215
+ , hyperparameters=None, batch_size_per_gp_sample=None, **kwargs):
216
+ batch_size_per_gp_sample = batch_size_per_gp_sample or (min(64, batch_size))
217
+ num_models = batch_size // batch_size_per_gp_sample
218
+ assert num_models * batch_size_per_gp_sample == batch_size, f'Batch size ({batch_size}) not divisible by batch_size_per_gp_sample ({batch_size_per_gp_sample})'
219
+
220
+ args = {'device': device, 'seq_len': seq_len, 'num_features': num_features, 'batch_size': batch_size_per_gp_sample}
221
+
222
+ models = [DifferentiablePrior(get_batch, hyperparameters, differentiable_hyperparameters, args) for _ in range(num_models)]
223
+ sample = sum([[model()] for model in models], [])
224
+
225
+ x, y, y_, hyperparameter_dict = zip(*sample)
226
+
227
+ if 'verbose' in hyperparameters and hyperparameters['verbose']:
228
+ print('Hparams', hyperparameter_dict[0].keys())
229
+
230
+ hyperparameter_matrix = []
231
+ for batch in hyperparameter_dict:
232
+ hyperparameter_matrix.append([batch[hp] for hp in batch])
233
+
234
+ transposed_hyperparameter_matrix = list(zip(*hyperparameter_matrix))
235
+ assert all([all([hp is None for hp in hp_]) or all([hp is not None for hp in hp_]) for hp_ in transposed_hyperparameter_matrix]), 'it should always be the case that when a hyper-parameter is None, once it is always None'
236
+ # we remove columns that are only None (i.e. not sampled)
237
+ hyperparameter_matrix = [[hp for hp in hp_ if hp is not None] for hp_ in hyperparameter_matrix]
238
+ if len(hyperparameter_matrix[0]) > 0:
239
+ packed_hyperparameters = torch.tensor(hyperparameter_matrix)
240
+ packed_hyperparameters = torch.repeat_interleave(packed_hyperparameters, repeats=batch_size_per_gp_sample, dim=0).detach()
241
+ else:
242
+ packed_hyperparameters = None
243
+
244
+ x, y, y_, packed_hyperparameters = (torch.cat(x, 1).detach()
245
+ , torch.cat(y, 1).detach()
246
+ , torch.cat(y_, 1).detach()
247
+ , packed_hyperparameters)#list(itertools.chain.from_iterable(itertools.repeat(x, batch_size_per_gp_sample) for x in packed_hyperparameters)))#torch.repeat_interleave(torch.stack(packed_hyperparameters, 0).detach(), repeats=batch_size_per_gp_sample, dim=0))
248
+
249
+ return x, y, y_, packed_hyperparameters
250
+
251
+ DataLoader = get_batch_to_dataloader(get_batch)
252
+ DataLoader.num_outputs = 1
253
+ #DataLoader.validate = lambda : 0
254
+
255
+ def draw_random_style(dl, device):
256
+ (hp_embedding, data, targets_), targets = next(iter(dl))
257
+ return hp_embedding.to(device)[0:1, :]
258
+
259
+ def merge_style_with_info(diff_hparams_keys, diff_hparams_f, style, transform=True):
260
+ params = dict(zip(diff_hparams_keys, zip(diff_hparams_f, style.detach().cpu().numpy().tolist()[0])))
261
+ def t(v):
262
+ if transform:
263
+ return v[0][1](v[1])
264
+ else:
265
+ return v[1]
266
+ return {k : t(v) for k, v in params.items()}
267
+
268
+
269
+ import ConfigSpace.hyperparameters as CSH
270
+
271
+ def replace_differentiable_distributions(config):
272
+ diff_config = config['differentiable_hyperparameters']
273
+ for name, diff_hp_dict in diff_config.items():
274
+ distribution = diff_hp_dict['distribution']
275
+ if distribution == 'uniform':
276
+ diff_hp_dict['sample'] = CSH.UniformFloatHyperparameter(name, diff_hp_dict['min'], diff_hp_dict['max'])
277
+ elif distribution == 'meta_beta':
278
+ diff_hp_dict['k'] = CSH.UniformFloatHyperparameter(name+'_k', diff_hp_dict['min'], diff_hp_dict['max'])
279
+ diff_hp_dict['b'] = CSH.UniformFloatHyperparameter(name+'_b', diff_hp_dict['min'], diff_hp_dict['max'])
280
+ elif distribution == 'meta_choice':
281
+ for i in range(1, len(diff_hp_dict['choice_values'])):
282
+ diff_hp_dict[f'choice_{i}_weight'] = CSH.UniformFloatHyperparameter(name+f'choice_{i}_weight', -5.0, 6.0)
283
+ elif distribution == 'meta_choice_mixed':
284
+ for i in range(1, len(diff_hp_dict['choice_values'])):
285
+ diff_hp_dict[f'choice_{i}_weight'] = CSH.UniformFloatHyperparameter(name+f'choice_{i}_weight', -5.0, 6.0)
286
+ elif distribution == 'meta_trunc_norm_log_scaled':
287
+ diff_hp_dict['log_mean'] = CSH.UniformFloatHyperparameter(name+'_log_mean', math.log(diff_hp_dict['min_mean']), math.log(diff_hp_dict['max_mean']))
288
+ min_std = diff_hp_dict['min_std'] if 'min_std' in diff_hp_dict else 0.001
289
+ max_std = diff_hp_dict['max_std'] if 'max_std' in diff_hp_dict else diff_hp_dict['max_mean']
290
+ diff_hp_dict['log_std'] = CSH.UniformFloatHyperparameter(name+'_log_std', math.log(min_std), math.log(max_std))
291
+ else:
292
+ raise ValueError(f'Unknown distribution {distribution}')
293
+
TabPFN/priors/fast_gp.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+
3
+ import torch
4
+ from torch import nn
5
+ import gpytorch
6
+
7
+ from .utils import get_batch_to_dataloader
8
+ from utils import default_device
9
+
10
+
11
+ # We will use the simplest form of GP model, exact inference
12
+ class ExactGPModel(gpytorch.models.ExactGP):
13
+ def __init__(self, train_x, train_y, likelihood):
14
+ super(ExactGPModel, self).__init__(train_x, train_y, likelihood)
15
+ self.mean_module = gpytorch.means.ConstantMean()
16
+ self.covar_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel())
17
+
18
+ def forward(self, x):
19
+ mean_x = self.mean_module(x)
20
+ covar_x = self.covar_module(x)
21
+ return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)
22
+
23
+
24
+ def get_model(x, y, hyperparameters):
25
+ likelihood = gpytorch.likelihoods.GaussianLikelihood(noise_constraint=gpytorch.constraints.GreaterThan(1.e-9))
26
+ model = ExactGPModel(x, y, likelihood)
27
+ model.likelihood.noise = torch.ones_like(model.likelihood.noise) * hyperparameters["noise"]
28
+ model.covar_module.outputscale = torch.ones_like(model.covar_module.outputscale) * hyperparameters["outputscale"]
29
+ model.covar_module.base_kernel.lengthscale = torch.ones_like(model.covar_module.base_kernel.lengthscale) * \
30
+ hyperparameters["lengthscale"]
31
+ return model, likelihood
32
+
33
+
34
+ @torch.no_grad()
35
+ def get_batch(batch_size, seq_len, num_features, device=default_device, hyperparameters=None,
36
+ equidistant_x=False, fix_x=None, **kwargs):
37
+ if isinstance(hyperparameters, (tuple, list)):
38
+ hyperparameters = {"noise": hyperparameters[0]
39
+ , "outputscale": hyperparameters[1]
40
+ , "lengthscale": hyperparameters[2]
41
+ , "is_binary_classification": hyperparameters[3]
42
+ # , "num_features_used": hyperparameters[4]
43
+ , "normalize_by_used_features": hyperparameters[5]
44
+ , "order_y": hyperparameters[6]
45
+ , "sampling": hyperparameters[7]
46
+ }
47
+ elif hyperparameters is None:
48
+ hyperparameters = {"noise": .1, "outputscale": .1, "lengthscale": .1}
49
+
50
+ if 'verbose' in hyperparameters and hyperparameters['verbose']:
51
+ print({"noise": hyperparameters['noise'], "outputscale": hyperparameters['outputscale']
52
+ , "lengthscale": hyperparameters['lengthscale'], 'batch_size': batch_size, 'sampling': hyperparameters['sampling']})
53
+
54
+ # hyperparameters = {k: hyperparameters[k]() if callable(hyperparameters[k]) else hyperparameters[k] for k in
55
+ # hyperparameters.keys()}
56
+ assert not (equidistant_x and (fix_x is not None))
57
+
58
+ with gpytorch.settings.fast_computations(*hyperparameters.get('fast_computations', (True, True, True))):
59
+ if equidistant_x:
60
+ assert num_features == 1
61
+ x = torch.linspace(0, 1., seq_len).unsqueeze(0).repeat(batch_size, 1).unsqueeze(-1)
62
+ elif fix_x is not None:
63
+ assert fix_x.shape == (seq_len, num_features)
64
+ x = fix_x.unsqueeze(0).repeat(batch_size, 1, 1).to(device)
65
+ else:
66
+ if hyperparameters.get('sampling','uniform') == 'uniform':
67
+ x = torch.rand(batch_size, seq_len, num_features, device=device)
68
+ else:
69
+ x = torch.randn(batch_size, seq_len, num_features, device=device)
70
+ model, likelihood = get_model(x, torch.Tensor(), hyperparameters)
71
+ model.to(device)
72
+ # trained_model = ExactGPModel(train_x, train_y, likelihood).cuda()
73
+ # trained_model.eval()
74
+ is_fitted = False
75
+ while not is_fitted:
76
+ try:
77
+ with gpytorch.settings.prior_mode(True):
78
+ model, likelihood = get_model(x, torch.Tensor(), hyperparameters)
79
+ model.to(device)
80
+
81
+ d = model(x)
82
+ d = likelihood(d)
83
+ sample = d.sample().transpose(0, 1)
84
+ is_fitted = True
85
+ except RuntimeError: # This can happen when torch.linalg.eigh fails. Restart with new init resolves this.
86
+ print('GP Fitting unsuccessful, retrying.. ')
87
+ print(x)
88
+ print(hyperparameters)
89
+
90
+ if bool(torch.any(torch.isnan(x)).detach().cpu().numpy()):
91
+ print({"noise": hyperparameters['noise'], "outputscale": hyperparameters['outputscale']
92
+ , "lengthscale": hyperparameters['lengthscale'], 'batch_size': batch_size})
93
+
94
+ # TODO: Multi output
95
+ return x.transpose(0, 1), sample, sample # x.shape = (T,B,H)
96
+
97
+ DataLoader = get_batch_to_dataloader(get_batch)
98
+ DataLoader.num_outputs = 1
99
+
100
+ def get_model_on_device(x,y,hyperparameters,device):
101
+ model, likelihood = get_model(x, y, hyperparameters)
102
+ model.to(device)
103
+ return model, likelihood
104
+
105
+
106
+ @torch.no_grad()
107
+ def evaluate(x, y, y_non_noisy, use_mse=False, hyperparameters={}, get_model_on_device=get_model_on_device, device=default_device, step_size=1, start_pos=0):
108
+ start_time = time.time()
109
+ losses_after_t = [.0] if start_pos == 0 else []
110
+ all_losses_after_t = []
111
+
112
+ with gpytorch.settings.fast_computations(*hyperparameters.get('fast_computations',(True,True,True))), gpytorch.settings.fast_pred_var(False):
113
+ for t in range(max(start_pos, 1), len(x), step_size):
114
+ loss_sum = 0.
115
+ model, likelihood = get_model_on_device(x[:t].transpose(0, 1), y[:t].transpose(0, 1), hyperparameters, device)
116
+
117
+
118
+ model.eval()
119
+ # print([t.shape for t in model.train_inputs])
120
+ # print(x[:t].transpose(0,1).shape, x[t].unsqueeze(1).shape, y[:t].transpose(0,1).shape)
121
+ f = model(x[t].unsqueeze(1))
122
+ l = likelihood(f)
123
+ means = l.mean.squeeze()
124
+ varis = l.covariance_matrix.squeeze()
125
+ # print(l.variance.squeeze(), l.mean.squeeze(), y[t])
126
+
127
+ assert len(means.shape) == len(varis.shape) == 1
128
+ assert len(means) == len(varis) == x.shape[1]
129
+
130
+ if use_mse:
131
+ c = nn.MSELoss(reduction='none')
132
+ ls = c(means, y[t])
133
+ else:
134
+ ls = -l.log_prob(y[t].unsqueeze(1))
135
+
136
+ losses_after_t.append(ls.mean())
137
+ all_losses_after_t.append(ls.flatten())
138
+ return torch.stack(all_losses_after_t).to('cpu'), torch.tensor(losses_after_t).to('cpu'), time.time() - start_time
139
+
140
+ if __name__ == '__main__':
141
+ hps = (.1,.1,.1)
142
+ for redo_idx in range(1):
143
+ print(
144
+ evaluate(*get_batch(1000, 10, hyperparameters=hps, num_features=10), use_mse=False, hyperparameters=hps))
TabPFN/priors/flexible_categorical.py ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import random
3
+
4
+ import torch
5
+ from torch import nn
6
+
7
+ from .utils import get_batch_to_dataloader
8
+ from utils import normalize_data, nan_handling_missing_for_unknown_reason_value, nan_handling_missing_for_no_reason_value, nan_handling_missing_for_a_reason_value, to_ranking_low_mem, remove_outliers
9
+ from .utils import normalize_by_used_features_f, randomize_classes, CategoricalActivation
10
+ from .utils import uniform_int_sampler_f
11
+
12
+ time_it = False
13
+
14
+ class BalancedBinarize(nn.Module):
15
+ def __init__(self):
16
+ super().__init__()
17
+
18
+ def forward(self, x):
19
+ return (x > torch.median(x)).float()
20
+
21
+ def class_sampler_f(min_, max_):
22
+ def s():
23
+ if random.random() > 0.5:
24
+ return uniform_int_sampler_f(min_, max_)()
25
+ return 2
26
+ return s
27
+
28
+ class MulticlassRank(nn.Module):
29
+ def __init__(self, num_classes, ordered_p=0.5):
30
+ super().__init__()
31
+ self.num_classes = class_sampler_f(2, num_classes)()
32
+ self.ordered_p = ordered_p
33
+
34
+ def forward(self, x):
35
+ # x has shape (T,B,H)
36
+
37
+ # CAUTION: This samples the same idx in sequence for each class boundary in a batch
38
+ class_boundaries = torch.randint(0, x.shape[0], (self.num_classes - 1,))
39
+ class_boundaries = x[class_boundaries].unsqueeze(1)
40
+
41
+ d = (x > class_boundaries).sum(axis=0)
42
+
43
+ randomized_classes = torch.rand((d.shape[1], )) > self.ordered_p
44
+ d[:, randomized_classes] = randomize_classes(d[:, randomized_classes], self.num_classes)
45
+ reverse_classes = torch.rand((d.shape[1],)) > 0.5
46
+ d[:, reverse_classes] = self.num_classes - 1 - d[:, reverse_classes]
47
+ return d
48
+
49
+ class MulticlassValue(nn.Module):
50
+ def __init__(self, num_classes, ordered_p=0.5):
51
+ super().__init__()
52
+ self.num_classes = class_sampler_f(2, num_classes)()
53
+ self.classes = nn.Parameter(torch.randn(num_classes-1), requires_grad=False)
54
+ self.ordered_p = ordered_p
55
+
56
+ def forward(self, x):
57
+ # x has shape (T,B,H)
58
+ d = (x > (self.classes.unsqueeze(-1).unsqueeze(-1))).sum(axis=0)
59
+
60
+ randomized_classes = torch.rand((d.shape[1],)) > self.ordered_p
61
+ d[:, randomized_classes] = randomize_classes(d[:, randomized_classes], self.num_classes)
62
+ reverse_classes = torch.rand((d.shape[1],)) > 0.5
63
+ d[:, reverse_classes] = self.num_classes - 1 - d[:, reverse_classes]
64
+ return d
65
+
66
+ class MulticlassMultiNode(nn.Module):
67
+ def __init__(self, num_classes, ordered_p=0.5):
68
+ super().__init__()
69
+ self.num_classes = class_sampler_f(2, num_classes)()
70
+ self.classes = nn.Parameter(torch.randn(num_classes-1), requires_grad=False)
71
+ self.alt_multi_class = MulticlassValue(num_classes, ordered_p)
72
+
73
+ def forward(self, x):
74
+ # x has shape T, B, H
75
+ if len(x.shape) == 2:
76
+ return self.alt_multi_class(x)
77
+ T = 3
78
+ x[torch.isnan(x)] = 0.00001
79
+ d = torch.multinomial(torch.pow(0.00001+torch.sigmoid(x[:, :, 0:self.num_classes]).reshape(-1, self.num_classes), T), 1, replacement=True).reshape(x.shape[0], x.shape[1]).float()
80
+ return d
81
+
82
+
83
+ class FlexibleCategorical(torch.nn.Module):
84
+ def __init__(self, get_batch, hyperparameters, args):
85
+ super(FlexibleCategorical, self).__init__()
86
+
87
+ self.h = {k: hyperparameters[k]() if callable(hyperparameters[k]) else hyperparameters[k] for k in
88
+ hyperparameters.keys()}
89
+ self.args = args
90
+ self.args_passed = {**self.args}
91
+ self.args_passed.update({'num_features': self.h['num_features_used']})
92
+ self.get_batch = get_batch
93
+
94
+ if self.h['num_classes'] > 1 and not self.h['balanced']:
95
+ if self.h['multiclass_type'] == 'rank':
96
+ self.class_assigner = MulticlassRank(self.h['num_classes']
97
+ , ordered_p=self.h['output_multiclass_ordered_p']
98
+ )
99
+ elif self.h['multiclass_type'] == 'value':
100
+ self.class_assigner = MulticlassValue(self.h['num_classes']
101
+ , ordered_p=self.h['output_multiclass_ordered_p']
102
+ )
103
+ elif self.h['multiclass_type'] == 'multi_node':
104
+ self.class_assigner = MulticlassMultiNode(self.h['num_classes'])
105
+ else:
106
+ raise ValueError("Unknow Multiclass type")
107
+ elif self.h['num_classes'] == 2 and self.h['balanced']:
108
+ self.class_assigner = BalancedBinarize()
109
+ elif self.h['num_classes'] > 2 and self.h['balanced']:
110
+ raise NotImplementedError("Balanced multiclass training is not possible")
111
+ else:
112
+ self.class_assigner = lambda x:x # Regression
113
+
114
+ def drop_for_reason(self, x, v):
115
+ nan_prob_sampler = CategoricalActivation(ordered_p=0.0
116
+ , categorical_p=1.0
117
+ , keep_activation_size=False,
118
+ num_classes_sampler=lambda: 20)
119
+ d = nan_prob_sampler(x)
120
+ # TODO: Make a different ordering for each activation
121
+ x[d < torch.rand((1,), device=x.device) * 20 * self.h['nan_prob_no_reason'] * random.random()] = v
122
+ return x
123
+
124
+ def drop_for_no_reason(self, x, v):
125
+ x[torch.rand(x.shape, device=self.args['device']) < self.h['nan_prob_no_reason']] = v
126
+ return x
127
+
128
+ def forward(self, batch_size):
129
+ start = time.time()
130
+ x, y, y_ = self.get_batch(hyperparameters=self.h, **self.args_passed)
131
+ if time_it:
132
+ print('Flex Forward Block 1', round(time.time() - start, 3))
133
+
134
+ start = time.time()
135
+
136
+ if self.h['nan_prob_no_reason']+self.h['nan_prob_a_reason']+self.h['nan_prob_unknown_reason'] > 0 and random.random() > 0.5: # Only one out of two datasets should have nans
137
+ if self.h['nan_prob_no_reason'] > 0 and random.random() > 0.5: # Missing for no reason
138
+ x = self.drop_for_no_reason(x, nan_handling_missing_for_no_reason_value(self.h['set_value_to_nan']))
139
+
140
+ if self.h['nan_prob_a_reason'] > 0 and random.random() > 0.5: # Missing for a reason
141
+ x = self.drop_for_reason(x, nan_handling_missing_for_a_reason_value(self.h['set_value_to_nan']))
142
+
143
+ if self.h['nan_prob_unknown_reason'] > 0: # Missing for unknown reason and random.random() > 0.5
144
+ if random.random() < self.h['nan_prob_unknown_reason_reason_prior']:
145
+ x = self.drop_for_no_reason(x, nan_handling_missing_for_unknown_reason_value(self.h['set_value_to_nan']))
146
+ else:
147
+ x = self.drop_for_reason(x, nan_handling_missing_for_unknown_reason_value(self.h['set_value_to_nan']))
148
+
149
+ # Categorical features
150
+ if 'categorical_feature_p' in self.h and random.random() > 1 - self.h['categorical_feature_p']:
151
+ p = random.random()
152
+ for col in range(x.shape[2]):
153
+ m = MulticlassRank(10, ordered_p=0.3)
154
+ if random.random() > p:
155
+ x[:, :, col] = m(x[:, :, col])
156
+
157
+ if time_it:
158
+ print('Flex Forward Block 2', round(time.time() - start, 3))
159
+ start = time.time()
160
+
161
+ if self.h['normalize_to_ranking']:
162
+ x = to_ranking_low_mem(x)
163
+ else:
164
+ x = remove_outliers(x)
165
+ x, y = normalize_data(x), normalize_data(y)
166
+
167
+ if time_it:
168
+ print('Flex Forward Block 3', round(time.time() - start, 3))
169
+ start = time.time()
170
+
171
+ # Cast to classification if enabled
172
+ y = self.class_assigner(y).float()
173
+
174
+ if time_it:
175
+ print('Flex Forward Block 4', round(time.time() - start, 3))
176
+ start = time.time()
177
+ if self.h['normalize_by_used_features']:
178
+ x = normalize_by_used_features_f(x, self.h['num_features_used'], self.args['num_features'], normalize_with_sqrt=self.h.get('normalize_with_sqrt',False))
179
+ if time_it:
180
+ print('Flex Forward Block 5', round(time.time() - start, 3))
181
+
182
+ start = time.time()
183
+ # Append empty features if enabled
184
+ x = torch.cat(
185
+ [x, torch.zeros((x.shape[0], x.shape[1], self.args['num_features'] - self.h['num_features_used']),
186
+ device=self.args['device'])], -1)
187
+ if time_it:
188
+ print('Flex Forward Block 6', round(time.time() - start, 3))
189
+
190
+ return x, y, y # x.shape = (T,B,H)
191
+
192
+ import torch.cuda as cutorch
193
+
194
+ @torch.no_grad()
195
+ def get_batch(batch_size, seq_len, num_features, get_batch, device, hyperparameters=None, batch_size_per_gp_sample=None, **kwargs):
196
+ batch_size_per_gp_sample = batch_size_per_gp_sample or (min(32, batch_size))
197
+ num_models = batch_size // batch_size_per_gp_sample
198
+ assert num_models > 0, f'Batch size ({batch_size}) is too small for batch_size_per_gp_sample ({batch_size_per_gp_sample})'
199
+ assert num_models * batch_size_per_gp_sample == batch_size, f'Batch size ({batch_size}) not divisible by batch_size_per_gp_sample ({batch_size_per_gp_sample})'
200
+
201
+ # Sample one seq_len for entire batch
202
+ seq_len = hyperparameters['seq_len_used']() if callable(hyperparameters['seq_len_used']) else seq_len
203
+
204
+ args = {'device': device, 'seq_len': seq_len, 'num_features': num_features, 'batch_size': batch_size_per_gp_sample}
205
+
206
+ models = [FlexibleCategorical(get_batch, hyperparameters, args).to(device) for _ in range(num_models)]
207
+
208
+ start = time.time()
209
+ sample = sum([[model(batch_size=batch_size_per_gp_sample)] for model in models], [])
210
+ #print('sample', time.time() - start)
211
+
212
+ x, y, y_ = zip(*sample)
213
+ x, y, y_ = torch.cat(x, 1).detach(), torch.cat(y, 1).detach(), torch.cat(y_, 1).detach()
214
+
215
+ # # TODO: Reintegrate this code (Doesn't work on batch dim), could be applied to each batch sample individually
216
+ # if hyperparameters['is_binary_classification'] and hyperparameters['order_y']:
217
+ # x, y = order_by_y(x, y)
218
+
219
+ return x, y, y_
220
+
221
+ # num_features_used = num_features_used_sampler()
222
+ # prior_outputscale = prior_outputscale_sampler()
223
+ # prior_lengthscale = prior_lengthscale_sampler()
224
+ #
225
+ # x, sample = normalize_data(x), normalize_data(sample)
226
+ #
227
+ # if is_binary_classification:
228
+ # sample = (sample > torch.median(sample, dim=0)[0]).float()
229
+ #
230
+ # if normalize_by_used_features:
231
+ # x = normalize_by_used_features_f(x, num_features_used, num_features)
232
+ #
233
+ # # # if is_binary_classification and order_y:
234
+ # # # x, sample = order_by_y(x, sample)
235
+ # #
236
+ # # Append empty features if enabled
237
+ # x = torch.cat([x, torch.zeros((x.shape[0], x.shape[1], num_features - num_features_used), device=device)], -1)
238
+
239
+ DataLoader = get_batch_to_dataloader(get_batch)
240
+ DataLoader.num_outputs = 1
TabPFN/priors/mlp.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import math
3
+
4
+ import torch
5
+ from torch import nn
6
+ import numpy as np
7
+
8
+ from utils import default_device
9
+ from .utils import get_batch_to_dataloader
10
+
11
+ class GaussianNoise(nn.Module):
12
+ def __init__(self, std, device):
13
+ super().__init__()
14
+ self.std = std
15
+ self.device=device
16
+
17
+ def forward(self, x):
18
+ return x + torch.normal(torch.zeros_like(x), self.std)
19
+
20
+
21
+ def causes_sampler_f(num_causes):
22
+ means = np.random.normal(0, 1, (num_causes))
23
+ std = np.abs(np.random.normal(0, 1, (num_causes)) * means)
24
+ return means, std
25
+
26
+ def get_batch(batch_size, seq_len, num_features, hyperparameters, device=default_device, num_outputs=1, sampling='normal', **kwargs):
27
+ if ('mix_activations' in hyperparameters) and hyperparameters['mix_activations']:
28
+ s = hyperparameters['prior_mlp_activations']()
29
+ hyperparameters['prior_mlp_activations'] = lambda : s
30
+
31
+ class MLP(torch.nn.Module):
32
+ def __init__(self, hyperparameters):
33
+ super(MLP, self).__init__()
34
+
35
+ with torch.no_grad():
36
+
37
+ for key in hyperparameters:
38
+ setattr(self, key, hyperparameters[key])
39
+
40
+ assert (self.num_layers >= 2)
41
+
42
+ if 'verbose' in hyperparameters and self.verbose:
43
+ print({k : hyperparameters[k] for k in ['is_causal', 'num_causes', 'prior_mlp_hidden_dim'
44
+ , 'num_layers', 'noise_std', 'y_is_effect', 'pre_sample_weights', 'prior_mlp_dropout_prob'
45
+ , 'pre_sample_causes']})
46
+
47
+ if self.is_causal:
48
+ self.prior_mlp_hidden_dim = max(self.prior_mlp_hidden_dim, num_outputs + 2 * num_features)
49
+ else:
50
+ self.num_causes = num_features
51
+
52
+ # This means that the mean and standard deviation of each cause is determined in advance
53
+ if self.pre_sample_causes:
54
+ self.causes_mean, self.causes_std = causes_sampler_f(self.num_causes)
55
+ self.causes_mean = torch.tensor(self.causes_mean, device=device).unsqueeze(0).unsqueeze(0).tile(
56
+ (seq_len, 1, 1))
57
+ self.causes_std = torch.tensor(self.causes_std, device=device).unsqueeze(0).unsqueeze(0).tile(
58
+ (seq_len, 1, 1))
59
+
60
+ def generate_module(layer_idx, out_dim):
61
+ # Determine std of each noise term in initialization, so that is shared in runs
62
+ # torch.abs(torch.normal(torch.zeros((out_dim)), self.noise_std)) - Change std for each dimension?
63
+ noise = (GaussianNoise(torch.abs(torch.normal(torch.zeros(size=(1, out_dim), device=device), float(self.noise_std))), device=device)
64
+ if self.pre_sample_weights else GaussianNoise(float(self.noise_std), device=device))
65
+ return [
66
+ nn.Sequential(*[self.prior_mlp_activations()
67
+ , nn.Linear(self.prior_mlp_hidden_dim, out_dim)
68
+ , noise])
69
+ ]
70
+
71
+ self.layers = [nn.Linear(self.num_causes, self.prior_mlp_hidden_dim, device=device)]
72
+ self.layers += [module for layer_idx in range(self.num_layers-1) for module in generate_module(layer_idx, self.prior_mlp_hidden_dim)]
73
+ if not self.is_causal:
74
+ self.layers += generate_module(-1, num_outputs)
75
+ self.layers = nn.Sequential(*self.layers)
76
+
77
+ # Initialize Model parameters
78
+ for i, (n, p) in enumerate(self.layers.named_parameters()):
79
+ if self.block_wise_dropout:
80
+ if len(p.shape) == 2: # Only apply to weight matrices and not bias
81
+ nn.init.zeros_(p)
82
+ # TODO: N blocks should be a setting
83
+ n_blocks = random.randint(1, math.ceil(math.sqrt(min(p.shape[0], p.shape[1]))))
84
+ w, h = p.shape[0] // n_blocks, p.shape[1] // n_blocks
85
+ keep_prob = (n_blocks*w*h) / p.numel()
86
+ for block in range(0, n_blocks):
87
+ nn.init.normal_(p[w * block: w * (block+1), h * block: h * (block+1)], std=self.init_std / keep_prob**(1/2))
88
+ else:
89
+ if len(p.shape) == 2: # Only apply to weight matrices and not bias
90
+ dropout_prob = self.prior_mlp_dropout_prob if i > 0 else 0.0 # Don't apply dropout in first layer
91
+ dropout_prob = min(dropout_prob, 0.99)
92
+ nn.init.normal_(p, std=self.init_std / (1. - dropout_prob)**(1/2))
93
+ p *= torch.bernoulli(torch.zeros_like(p) + 1. - dropout_prob)
94
+
95
+ def forward(self):
96
+ def sample_normal():
97
+ if self.pre_sample_causes:
98
+ causes = torch.normal(self.causes_mean, self.causes_std.abs()).float()
99
+ else:
100
+ causes = torch.normal(0., 1., (seq_len, 1, self.num_causes), device=device).float()
101
+ return causes
102
+
103
+ if self.sampling == 'normal':
104
+ causes = sample_normal()
105
+ elif self.sampling == 'mixed':
106
+ zipf_p, multi_p, normal_p = random.random() * 0.66, random.random() * 0.66, random.random() * 0.66
107
+ def sample_cause(n):
108
+ if random.random() > normal_p:
109
+ if self.pre_sample_causes:
110
+ return torch.normal(self.causes_mean[:, :, n], self.causes_std[:, :, n].abs()).float()
111
+ else:
112
+ return torch.normal(0., 1., (seq_len, 1), device=device).float()
113
+ elif random.random() > multi_p:
114
+ x = torch.multinomial(torch.rand((random.randint(2, 10))), seq_len, replacement=True).to(device).unsqueeze(-1).float()
115
+ x = (x - torch.mean(x)) / torch.std(x)
116
+ return x
117
+ else:
118
+ x = torch.minimum(torch.tensor(np.random.zipf(2.0 + random.random() * 2, size=(seq_len)),
119
+ device=device).unsqueeze(-1).float(), torch.tensor(10.0, device=device))
120
+ return x - torch.mean(x)
121
+ causes = torch.cat([sample_cause(n).unsqueeze(-1) for n in range(self.num_causes)], -1)
122
+ elif self.sampling == 'uniform':
123
+ causes = torch.rand((seq_len, 1, self.num_causes), device=device)
124
+ else:
125
+ raise ValueError(f'Sampling is set to invalid setting: {sampling}.')
126
+
127
+ outputs = [causes]
128
+ for layer in self.layers:
129
+ outputs.append(layer(outputs[-1]))
130
+ outputs = outputs[2:]
131
+
132
+ if self.is_causal:
133
+ ## Sample nodes from graph if model is causal
134
+ outputs_flat = torch.cat(outputs, -1)
135
+
136
+ if self.in_clique:
137
+ random_perm = random.randint(0, outputs_flat.shape[-1] - num_outputs - num_features) + torch.randperm(num_outputs + num_features, device=device)
138
+ else:
139
+ random_perm = torch.randperm(outputs_flat.shape[-1]-1, device=device)
140
+
141
+ random_idx_y = list(range(-num_outputs, -0)) if self.y_is_effect else random_perm[0:num_outputs]
142
+ random_idx = random_perm[num_outputs:num_outputs + num_features]
143
+
144
+ if self.sort_features:
145
+ random_idx, _ = torch.sort(random_idx)
146
+ y = outputs_flat[:, :, random_idx_y]
147
+
148
+ x = outputs_flat[:, :, random_idx]
149
+ else:
150
+ y = outputs[-1][:, :, :]
151
+ x = causes
152
+
153
+ if bool(torch.any(torch.isnan(x)).detach().cpu().numpy()) or bool(torch.any(torch.isnan(y)).detach().cpu().numpy()):
154
+ x[:] = 0.0
155
+ y[:] = 1.0
156
+
157
+ return x, y
158
+
159
+ model = MLP(hyperparameters).to(device)
160
+
161
+ sample = sum([[model()] for _ in range(0, batch_size)], [])
162
+
163
+ x, y = zip(*sample)
164
+ y = torch.cat(y, 1).detach().squeeze(2)
165
+ x = torch.cat(x, 1).detach()
166
+ x = x[..., torch.randperm(x.shape[-1])]
167
+
168
+ return x, y, y
169
+
170
+
171
+ DataLoader = get_batch_to_dataloader(get_batch)
172
+ DataLoader.num_outputs = 1
173
+
TabPFN/priors/prior.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils.data import DataLoader
2
+
3
+
4
+ class PriorDataLoader(DataLoader):
5
+ pass
6
+ # init accepts num_steps as first argument
7
+
8
+ # has two attributes set on class or object level:
9
+ # num_features: int and
10
+ # num_outputs: int
11
+ # fuse_x_y: bool
12
+ # Optional: validate function that accepts a transformer model
TabPFN/priors/prior_bag.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from .utils import get_batch_to_dataloader
4
+ from utils import default_device
5
+
6
+ def get_batch(batch_size, seq_len, num_features, device=default_device
7
+ , hyperparameters=None, batch_size_per_gp_sample=None, **kwargs):
8
+ batch_size_per_gp_sample = batch_size_per_gp_sample or (min(64, batch_size))
9
+ num_models = batch_size // batch_size_per_gp_sample
10
+ assert num_models * batch_size_per_gp_sample == batch_size, f'Batch size ({batch_size}) not divisible by batch_size_per_gp_sample ({batch_size_per_gp_sample})'
11
+
12
+ args = {'device': device, 'seq_len': seq_len, 'num_features': num_features, 'batch_size': batch_size_per_gp_sample}
13
+
14
+ prior_bag_priors_get_batch = hyperparameters['prior_bag_get_batch']
15
+ prior_bag_priors_p = [1.0] + [hyperparameters[f'prior_bag_exp_weights_{i}'] for i in range(1, len(prior_bag_priors_get_batch))]
16
+
17
+ weights = torch.tensor(prior_bag_priors_p, dtype=torch.float) # create a tensor of weights
18
+ batch_assignments = torch.multinomial(torch.softmax(weights, 0), num_models, replacement=True).numpy()
19
+
20
+ if 'verbose' in hyperparameters and hyperparameters['verbose']:
21
+ print('PRIOR_BAG:', weights, batch_assignments)
22
+
23
+ sample = sum([[prior_bag_priors_get_batch[int(prior_idx)](hyperparameters=hyperparameters, **args)] for prior_idx in batch_assignments], [])
24
+
25
+ x, y, y_ = zip(*sample)
26
+ x, y, y_ = (torch.cat(x, 1).detach()
27
+ , torch.cat(y, 1).detach()
28
+ , torch.cat(y_, 1).detach())
29
+ return x, y, y_
30
+
31
+ DataLoader = get_batch_to_dataloader(get_batch)
32
+ DataLoader.num_outputs = 1
TabPFN/priors/utils.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+
3
+ import torch
4
+
5
+ from utils import set_locals_in_self
6
+ from .prior import PriorDataLoader
7
+ from torch import nn
8
+ import numpy as np
9
+ import matplotlib.pyplot as plt
10
+ import matplotlib.gridspec as gridspec
11
+ import scipy.stats as stats
12
+ import math
13
+
14
+ def get_batch_to_dataloader(get_batch_method_):
15
+ class DL(PriorDataLoader):
16
+ get_batch_method = get_batch_method_
17
+
18
+ # Caution, you might need to set self.num_features manually if it is not part of the args.
19
+ def __init__(self, num_steps, fuse_x_y=False, **get_batch_kwargs):
20
+ set_locals_in_self(locals())
21
+ # The stuff outside the or is set as class attribute before instantiation.
22
+ self.num_features = get_batch_kwargs.get('num_features') or self.num_features
23
+ self.num_outputs = get_batch_kwargs.get('num_outputs') or self.num_outputs
24
+ print('DataLoader.__dict__', self.__dict__)
25
+
26
+ @staticmethod
27
+ def gbm(*args, fuse_x_y=True, **kwargs):
28
+ dynamic_seq_len = callable(kwargs['seq_len'])
29
+ kwargs['seq_len'] = kwargs['seq_len']() if dynamic_seq_len else kwargs['seq_len']
30
+ # Scales the batch size dynamically with the power of 'dynamic_batch_size'.
31
+ # A transformer with quadratic memory usage in the seq len would need a power of 2 to keep memory constant.
32
+ if dynamic_seq_len and 'dynamic_batch_size' in kwargs and kwargs['dynamic_batch_size'] > 0:
33
+ kwargs['batch_size'] = kwargs['batch_size'] * math.floor(math.pow(kwargs['seq_len_maximum'], kwargs['dynamic_batch_size']) / math.pow(kwargs['seq_len'], kwargs['dynamic_batch_size']))
34
+ batch = get_batch_method_(*args, **kwargs)
35
+ x, y, target_y, style = batch if len(batch) == 4 else (batch[0], batch[1], batch[2], None)
36
+ if fuse_x_y:
37
+ return torch.cat([x, torch.cat([torch.zeros_like(y[:1]), y[:-1]], 0).unsqueeze(-1).float()],
38
+ -1), target_y
39
+ else:
40
+ return (style, x, y), target_y
41
+
42
+ def __len__(self):
43
+ return self.num_steps
44
+
45
+ def __iter__(self):
46
+ return iter(self.gbm(**self.get_batch_kwargs, fuse_x_y=self.fuse_x_y) for _ in range(self.num_steps))
47
+
48
+
49
+ return DL
50
+
51
+ import seaborn as sns
52
+ def plot_features(data, targets, fig=None):
53
+ if torch.is_tensor(data):
54
+ data = data.detach().cpu().numpy()
55
+ targets = targets.detach().cpu().numpy()
56
+ #data = np.concatenate([data, data[:, -1:]], -1)
57
+ #df = pd.DataFrame(data, columns=list(range(0, data.shape[1])))
58
+ #g = sns.pairplot(df, hue=data.shape[1]-1, palette="Set2", diag_kind="kde", height=2.5)
59
+ #plt.legend([], [], frameon=False)
60
+ #g._legend.remove()
61
+ #g = sns.PairGrid(df, hue=data.shape[1]-1)
62
+ #g.map_diag(sns.histplot)
63
+ #g.map_offdiag(sns.scatterplot)
64
+ #g._legend.remove()
65
+
66
+ fig2 = fig if fig else plt.figure(figsize=(8, 8))
67
+ spec2 = gridspec.GridSpec(ncols=data.shape[1], nrows=data.shape[1], figure=fig2)
68
+ for d in range(0, data.shape[1]):
69
+ for d2 in range(0, data.shape[1]):
70
+ sub_ax = fig2.add_subplot(spec2[d, d2])
71
+ if d == d2:
72
+ sns.kdeplot(data[:, d],hue=targets[:],ax=sub_ax,legend=False, palette="deep")
73
+ sub_ax.set(ylabel=None)
74
+ else:
75
+ sns.scatterplot(x=data[:, d], y=data[:, d2],
76
+ hue=targets[:],legend=False, palette="deep")
77
+ #plt.scatter(data[:, d], data[:, d2],
78
+ # c=targets[:])
79
+ sub_ax.get_xaxis().set_ticks([])
80
+ sub_ax.get_yaxis().set_ticks([])
81
+ plt.subplots_adjust(wspace=0.05, hspace=0.05)
82
+ fig2.show()
83
+
84
+
85
+ def plot_prior(prior):
86
+ s = np.array([prior() for _ in range(0, 1000)])
87
+ count, bins, ignored = plt.hist(s, 50, density=True)
88
+ print(s.min())
89
+ plt.show()
90
+
91
+ trunc_norm_sampler_f = lambda mu, sigma : lambda: stats.truncnorm((0 - mu) / sigma, (1000000 - mu) / sigma, loc=mu, scale=sigma).rvs(1)[0]
92
+ beta_sampler_f = lambda a, b : lambda : np.random.beta(a, b)
93
+ gamma_sampler_f = lambda a, b : lambda : np.random.gamma(a, b)
94
+ uniform_sampler_f = lambda a, b : lambda : np.random.uniform(a, b)
95
+ uniform_int_sampler_f = lambda a, b : lambda : round(np.random.uniform(a, b))
96
+ def zipf_sampler_f(a, b, c):
97
+ x = np.arange(b, c)
98
+ weights = x ** (-a)
99
+ weights /= weights.sum()
100
+ return lambda : stats.rv_discrete(name='bounded_zipf', values=(x, weights)).rvs(1)
101
+ scaled_beta_sampler_f = lambda a, b, scale, minimum : lambda : minimum + round(beta_sampler_f(a, b)() * (scale - minimum))
102
+
103
+
104
+ def normalize_by_used_features_f(x, num_features_used, num_features, normalize_with_sqrt=False):
105
+ if normalize_with_sqrt:
106
+ return x / (num_features_used / num_features)**(1 / 2)
107
+ return x / (num_features_used / num_features)
108
+
109
+
110
+ def order_by_y(x, y):
111
+ order = torch.argsort(y if random.randint(0, 1) else -y, dim=0)[:, 0, 0]
112
+ order = order.reshape(2, -1).transpose(0, 1).reshape(-1)#.reshape(seq_len)
113
+ x = x[order] # .reshape(2, -1).transpose(0, 1).reshape(-1).flip([0]).reshape(seq_len, 1, -1)
114
+ y = y[order] # .reshape(2, -1).transpose(0, 1).reshape(-1).reshape(seq_len, 1, -1)
115
+
116
+ return x, y
117
+
118
+ def randomize_classes(x, num_classes):
119
+ classes = torch.arange(0, num_classes, device=x.device)
120
+ random_classes = torch.randperm(num_classes, device=x.device).type(x.type())
121
+ x = ((x.unsqueeze(-1) == classes) * random_classes).sum(-1)
122
+ return x
123
+
124
+
125
+ class CategoricalActivation(nn.Module):
126
+ def __init__(self, categorical_p=0.1, ordered_p=0.7
127
+ , keep_activation_size=False
128
+ , num_classes_sampler=zipf_sampler_f(0.8, 1, 10)):
129
+ self.categorical_p = categorical_p
130
+ self.ordered_p = ordered_p
131
+ self.keep_activation_size = keep_activation_size
132
+ self.num_classes_sampler = num_classes_sampler
133
+
134
+ super().__init__()
135
+
136
+ def forward(self, x):
137
+ # x shape: T, B, H
138
+
139
+ x = nn.Softsign()(x)
140
+
141
+ num_classes = self.num_classes_sampler()
142
+ hid_strength = torch.abs(x).mean(0).unsqueeze(0) if self.keep_activation_size else None
143
+
144
+ categorical_classes = torch.rand((x.shape[1], x.shape[2])) < self.categorical_p
145
+ class_boundaries = torch.zeros((num_classes - 1, x.shape[1], x.shape[2]), device=x.device, dtype=x.dtype)
146
+ # Sample a different index for each hidden dimension, but shared for all batches
147
+ for b in range(x.shape[1]):
148
+ for h in range(x.shape[2]):
149
+ ind = torch.randint(0, x.shape[0], (num_classes - 1,))
150
+ class_boundaries[:, b, h] = x[ind, b, h]
151
+
152
+ for b in range(x.shape[1]):
153
+ x_rel = x[:, b, categorical_classes[b]]
154
+ boundaries_rel = class_boundaries[:, b, categorical_classes[b]].unsqueeze(1)
155
+ x[:, b, categorical_classes[b]] = (x_rel > boundaries_rel).sum(dim=0).float() - num_classes / 2
156
+
157
+ ordered_classes = torch.rand((x.shape[1],x.shape[2])) < self.ordered_p
158
+ ordered_classes = torch.logical_and(ordered_classes, categorical_classes)
159
+ x[:, ordered_classes] = randomize_classes(x[:, ordered_classes], num_classes)
160
+
161
+ x = x * hid_strength if self.keep_activation_size else x
162
+
163
+ return x
TabPFN/requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Please use python V 3.7 to be compatible with all packages
2
+ gpytorch==1.5.0
3
+ torch==1.9.0
4
+ scikit-learn==0.24.2
5
+ pyyaml==5.4.1
6
+ seaborn==0.11.2
7
+ xgboost==1.4.0
8
+ tqdm==4.62.1
9
+ numpy==1.21.2
10
+ openml==0.12.2
11
+ catboost==0.26.1
12
+ auto-sklearn==0.14.5
13
+ hyperopt==0.2.5
14
+ configspace==0.4.21
15
+ # autogluon==0.4.0
TabPFN/scripts/__pycache__/tabular_baselines.cpython-39.pyc ADDED
Binary file (11.3 kB). View file