DongfuJiang commited on
Commit
301c810
·
1 Parent(s): 83ba2c4
Files changed (3) hide show
  1. app.py +107 -0
  2. requirements.txt +5 -0
  3. utils.py +85 -0
app.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import sys
3
+ import os
4
+ from datasets import load_dataset
5
+ from typing import List
6
+ import utils
7
+
8
+
9
+ DESCRIPTIONS = """# 🐯TIGERScore
10
+
11
+ We present ***TIGERScore***, a **T**rained metric that follows **I**nstruction **G**uidance to perform **E**xplainable, and **R**eference-free evaluation over a wide spectrum of text generation tasks. Different from other automatic evaluation methods that only provide arcane scores, TIGERScore is guided by the natural language instruction to provide error analysis to pinpoint the mistakes in the generated text.
12
+
13
+ ### [**Website**](https://tiger-ai-lab.github.io/TIGERScore/) [**Paper**](https://arxiv.org/abs/2310.00752) [**Code**](https://github.com/TIGER-AI-Lab/TIGERScore) [**TIGERScore-7B**](https://huggingface.co/TIGER-Lab/TIGERScore-7B-V1.0) [**TIGERScore-13B**](https://huggingface.co/TIGER-Lab/TIGERScore-13B-V1.0)
14
+
15
+ """
16
+
17
+ EXAMPLES_DATASET = load_dataset("TIGER-Lab/MetricInstruct", split="train_mix")
18
+ SHUFFLED_EXAMPLES_DATASET = EXAMPLES_DATASET.shuffle(seed=42)
19
+ EXAMPLES = []
20
+ fields = ["task", "instruction", "input_context", "hypo_output"]
21
+ print("Loading examples...")
22
+ for i, ex in enumerate(SHUFFLED_EXAMPLES_DATASET):
23
+ if any([not ex[field] for field in fields]):
24
+ continue
25
+ EXAMPLES.append([ex[field] for field in fields])
26
+ if i >= 100:
27
+ break
28
+
29
+ def tigerscore(task, input_context, generation_instruction, hypo_output, max_new_tokens=512, temperature=0.7, top_p=1.0):
30
+ return utils.generate(
31
+ task, input_context,
32
+ generation_instruction, hypo_output,
33
+ max_new_tokens=max_new_tokens,
34
+ temperature=temperature, top_p=top_p
35
+ )
36
+
37
+ def get_examples(task, inst_textbox, input_textbox, hypo_output_textbox):
38
+ return gr.Dropdown.update(value=task), inst_textbox, input_textbox, hypo_output_textbox
39
+
40
+ ## initialize the model
41
+ print("Loading TIGERScore model...")
42
+ utils.load_tigerscore("7b")
43
+
44
+ with gr.Blocks(theme='gradio/soft') as demo:
45
+ gr.Markdown(DESCRIPTIONS)
46
+ gr.Markdown("## TIGERScore Inputs")
47
+
48
+ tasks_dropdown = gr.Dropdown(label="Task", choices=utils.tasks + ["other"], value="translation", show_label=True)
49
+ inst_textbox = gr.Textbox(lines=1, label="Instruction", placeholder="Enter instruction here", show_label=True)
50
+ input_textbox = gr.Textbox(lines=4, label="Input Context", placeholder="Enter input context here", show_label=True)
51
+ hypo_output_textbox = gr.Textbox(lines=4, label="Hypothesis Output", placeholder="Enter hypothesis output to be evaluated here", show_label=True)
52
+
53
+ with gr.Row():
54
+ clear_button = gr.Button('Clear', variant='primary')
55
+ submit_button = gr.Button('Submit', variant='primary')
56
+
57
+ with gr.Accordion(label='Advanced options', open=False):
58
+ max_new_tokens = gr.Slider(
59
+ label='Max new tokens fuser can generate',
60
+ minimum=256,
61
+ maximum=1024,
62
+ step=1,
63
+ value=512,
64
+ )
65
+ temperature = gr.Slider(
66
+ label='Temperature of fuser generation',
67
+ minimum=0.1,
68
+ maximum=2.0,
69
+ step=0.1,
70
+ value=0.7,
71
+ )
72
+ top_p = gr.Slider(
73
+ label='Top-p of fuser generation',
74
+ minimum=0.05,
75
+ maximum=1.0,
76
+ step=0.05,
77
+ value=1.0,
78
+ )
79
+
80
+ gr.Markdown("## TIGERScore Outputs")
81
+ evaluation_output_textbox = gr.Textbox(lines=4, label="Evaluation Output", placeholder="Evaluation output", show_label=True)
82
+
83
+
84
+ submit_button.click(
85
+ fn=tigerscore,
86
+ inputs=[tasks_dropdown, input_textbox, inst_textbox, hypo_output_textbox, max_new_tokens, temperature, top_p],
87
+ outputs=evaluation_output_textbox,
88
+ )
89
+
90
+ batch_examples = gr.Examples(
91
+ examples=EXAMPLES,
92
+ fn=get_examples,
93
+ cache_examples=True,
94
+ examples_per_page=5,
95
+ inputs=[tasks_dropdown, inst_textbox, input_textbox, hypo_output_textbox],
96
+ outputs=[tasks_dropdown, inst_textbox, input_textbox, hypo_output_textbox],
97
+ )
98
+
99
+ citations = gr.Markdown("""## Citation
100
+ @article{jiang2023TIGERScore,
101
+ title={TIGERScore: Towards Building Explainable Metric for All Text Generation Tasks},
102
+ author={Dongfu Jiang, Yishan Li, Ge Zhang, Wenhao Huang, Bill Yuchen Lin, Wenhu Chen},
103
+ journal={arXiv preprint arXiv:2310.00752},
104
+ year={2023}
105
+ }""")
106
+
107
+ demo.queue(max_size=20).launch()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ transformers==4.33.2
2
+ datasets==2.10.0
3
+ torch
4
+ accelerate
5
+ gradio
utils.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModelForCausalLM
2
+ from string import Template
3
+ import torch
4
+
5
+ FINETUNE_INST = "You are evaluating errors in a model-generated output for a(an) ${task} task."
6
+ FINETUNE_INPUT = """\
7
+ Task instruction: ${generation_instruction}
8
+ Source: ${input_context}
9
+ Model-generated Output: ${hypothesis_output}
10
+
11
+ Based on the given task instruction and source, identify errors in this model-generated output.
12
+ For each error you give in the response, please also elaborate the following information:
13
+ - error location (the words that are wrong in the output)
14
+ - error aspect it belongs to.
15
+ - explanation why it's an error, and the correction suggestions.
16
+ - severity of the error ("Major" or "Minor").
17
+ - reduction of score (between 0.5 and 5 given the severity of the error)
18
+
19
+ Your evaluation output:
20
+ """
21
+
22
+ TIGERScore_model_map = {
23
+ "7b": "TIGER-Lab/TIGERScore-7B-V1.0",
24
+ "13b": "TIGER-Lab/TIGERScore-13B-V1.0",
25
+ }
26
+ tigerscore_model = None
27
+ tigerscore_tokenizer = None
28
+
29
+ tasks = [
30
+ "translation",
31
+ "summarization",
32
+ "data2text",
33
+ "mathQA",
34
+ "long-form QA",
35
+ "instruction-following",
36
+ ]
37
+
38
+ def load_tigerscore(model_size):
39
+ assert model_size in TIGERScore_model_map
40
+ model_name = TIGERScore_model_map[model_size]
41
+ global tigerscore_model, tigerscore_tokenizer
42
+ tigerscore_model = AutoModelForCausalLM.from_pretrained(
43
+ model_name,
44
+ torch_dtype=torch.bfloat16,
45
+ device_map="auto"
46
+ )
47
+ tigerscore_tokenizer = AutoTokenizer.from_pretrained(
48
+ model_name,
49
+ use_fast=True
50
+ )
51
+
52
+ def generate(task, input_context, generation_instruction, hypo_output, **generate_kwargs):
53
+ inst_part = Template(FINETUNE_INST)
54
+ inst_part = inst_part.substitute(task=task)
55
+ input_part = Template(FINETUNE_INPUT)
56
+ input_part = input_part.substitute(
57
+ generation_instruction=generation_instruction,
58
+ input_context=input_context,
59
+ hypothesis_output=hypo_output
60
+ )
61
+ prompt = (inst_part + "\n" + input_part).strip("\n ") + "\n"
62
+ encodings = tigerscore_tokenizer(prompt, return_tensors="pt")
63
+ input_ids = encodings["input_ids"].to(tigerscore_model.device)
64
+ attention_mask = encodings["attention_mask"].to(tigerscore_model.device)
65
+ gen_params = {
66
+ "input_ids": input_ids,
67
+ "attention_mask": attention_mask,
68
+ "max_new_tokens": 512,
69
+ "do_sample": True,
70
+ "top_k": 1,
71
+ "num_return_sequences": 1,
72
+ }
73
+ gen_params.update(generate_kwargs)
74
+ output = tigerscore_model.generate(**gen_params)
75
+ output = tigerscore_tokenizer.decode(output[0][len(input_ids[0]):], skip_special_tokens=True)
76
+ return output
77
+
78
+ if __name__ == "__main__":
79
+ task = "translation"
80
+ input_context = "Der künftige EM-Cheforganisator Philipp Lahm soll laut Grindel im DFB-Präsidium mitarbeiten."
81
+ generation_instruction = "Translate the following text from German to English."
82
+ hypo_output = "According to Grindel, the future head of the European Championships, Philipp Lahm, is to participate in the DFB Presidency."
83
+ output = generate(task, input_context, generation_instruction, hypo_output)
84
+ print(output)
85
+