DongfuJiang commited on
Commit
a915791
1 Parent(s): 0afd9ef
Files changed (4) hide show
  1. README.md +1 -1
  2. app_idefics2.py +224 -0
  3. app.py → app_mllava.py +0 -0
  4. requirements.txt +1 -1
README.md CHANGED
@@ -5,7 +5,7 @@ colorFrom: green
5
  colorTo: yellow
6
  sdk: gradio
7
  sdk_version: 4.24.0
8
- app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
  short_description: Multimodal Language Model
 
5
  colorTo: yellow
6
  sdk: gradio
7
  sdk_version: 4.24.0
8
+ app_file: app_idefics2.py
9
  pinned: false
10
  license: apache-2.0
11
  short_description: Multimodal Language Model
app_idefics2.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ import time
4
+ from PIL import Image
5
+ from transformers import AutoProcessor, AutoModelForVision2Seq
6
+ from transformers.image_utils import load_image
7
+ from typing import List
8
+ processor = AutoProcessor.from_pretrained("TIGER-Lab/Mantis-8B-Idefics2")
9
+ model = AutoModelForVision2Seq.from_pretrained("TIGER-Lab/Mantis-8B-Idefics2")
10
+
11
+ @spaces.GPU
12
+ def generate_stream(text:str, images:List[Image.Image], history: List[dict], **kwargs):
13
+ global processor, model
14
+ model = model.to("cuda")
15
+ if not images:
16
+ images = None
17
+
18
+ prompt = processor.apply_chat_template(history, add_generation_prompt=True)
19
+ print("Prompt: ")
20
+ print(prompt)
21
+ print("Images: ")
22
+ print(images)
23
+ inputs = processor(text=prompt, images=images, return_tensors="pt")
24
+ inputs = {k: v.to(model.device) for k, v in inputs.items()}
25
+
26
+ from transformers import TextIteratorStreamer
27
+ from threading import Thread
28
+ streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
29
+ kwargs["streamer"] = streamer
30
+ inputs.update(kwargs)
31
+ thread = Thread(target=model.generate, kwargs=inputs)
32
+ thread.start()
33
+ output = ""
34
+ for _output in streamer:
35
+ output += _output
36
+ yield output
37
+
38
+ def enable_next_image(uploaded_images, image):
39
+ uploaded_images.append(image)
40
+ return uploaded_images, gr.MultimodalTextbox(value=None, interactive=False)
41
+
42
+ def add_message(history, message):
43
+ if message["files"]:
44
+ for file in message["files"]:
45
+ history.append([(file,), None])
46
+ if message["text"]:
47
+ history.append([message["text"], None])
48
+ return history, gr.MultimodalTextbox(value=None)
49
+
50
+ def print_like_dislike(x: gr.LikeData):
51
+ print(x.index, x.value, x.liked)
52
+
53
+
54
+ def get_chat_images(history):
55
+ images = []
56
+ for message in history:
57
+ if isinstance(message[0], tuple):
58
+ image = load_image(message[0][0])
59
+ images.append(image)
60
+ return images
61
+
62
+ def get_chat_history(history):
63
+
64
+ images = get_chat_images(history)
65
+ messages = []
66
+ cur_image_idx = 0
67
+ for i, message in enumerate(history):
68
+ if isinstance(message[0], str):
69
+ num_images = message[0].count("<image>")
70
+ messages.append(
71
+ {
72
+ "role": "user",
73
+ "content": []
74
+ }
75
+ )
76
+ assert num_images + cur_image_idx <= len(images), f"Number of images uploaded is less than the number of <image> placeholders in the text. Please upload more images."
77
+ if num_images > 0:
78
+ for sub_text in message[0].split("<image>"):
79
+ if sub_text.strip():
80
+ messages[-1]["content"].append({"type": "text", "text": sub_text.strip()})
81
+ if cur_image_idx < len(images):
82
+ messages[-1]["content"].append({"type": "image"})
83
+ cur_image_idx += 1
84
+ else:
85
+ messages[-1]["content"].append({"type": "text", "text": message[0]})
86
+ elif isinstance(message[0], tuple):
87
+ pass
88
+ return messages, images
89
+
90
+
91
+ def bot(history):
92
+ cur_messages = {"text": "", "images": []}
93
+ for message in history[::-1]:
94
+ if message[1]:
95
+ break
96
+ if isinstance(message[0], str):
97
+ cur_messages["text"] = message[0] + " " + cur_messages["text"]
98
+ elif isinstance(message[0], tuple):
99
+ cur_messages["images"].extend(message[0])
100
+ cur_messages["text"] = cur_messages["text"].strip()
101
+ cur_messages["images"] = cur_messages["images"][::-1]
102
+ if not cur_messages["text"]:
103
+ raise gr.Error("Please enter a message")
104
+ if cur_messages['text'].count("<image>") < len(cur_messages['images']):
105
+ gr.Warning("The number of images uploaded is more than the number of <image> placeholders in the text. Will automatically prepend <image> to the text.")
106
+ cur_messages['text'] = "<image> "* (len(cur_messages['images']) - cur_messages['text'].count("<image>")) + cur_messages['text']
107
+ history[-1][0] = cur_messages["text"]
108
+ if cur_messages['text'].count("<image>") > len(cur_messages['images']):
109
+ gr.Warning("The number of images uploaded is less than the number of <image> placeholders in the text. Will automatically remove extra <image> placeholders from the text.")
110
+ cur_messages['text'] = cur_messages['text'][::-1].replace("<image>"[::-1], "", cur_messages['text'].count("<image>") - len(cur_messages['images']))[::-1]
111
+ history[-1][0] = cur_messages["text"]
112
+
113
+ chat_history, chat_images = get_chat_history(history)
114
+
115
+ generation_kwargs = {
116
+ "max_new_tokens": 4096,
117
+ "num_beams": 1,
118
+ "do_sample": False
119
+ }
120
+
121
+ response = generate_stream(None, chat_images, chat_history, **generation_kwargs)
122
+ for _output in response:
123
+ history[-1][1] = _output
124
+ time.sleep(0.05)
125
+ yield history
126
+
127
+
128
+
129
+ def build_demo():
130
+ with gr.Blocks() as demo:
131
+
132
+ gr.Markdown(""" # Mantis
133
+ Mantis is a multimodal conversational AI model that can chat with users about images and text. It's optimized for multi-image reasoning, where inverleaved text and images can be used to generate responses.
134
+
135
+ ### [Paper](https://arxiv.org/abs/2405.01483) | [Github](https://github.com/TIGER-AI-Lab/Mantis) | [Models](https://huggingface.co/collections/TIGER-Lab/mantis-6619b0834594c878cdb1d6e4) | [Dataset](https://huggingface.co/datasets/TIGER-Lab/Mantis-Instruct) | [Website](https://tiger-ai-lab.github.io/Mantis/)
136
+ """)
137
+
138
+ gr.Markdown("""## Chat with Mantis
139
+ Mantis supports interleaved text-image input format, where you can simply use the placeholder `<image>` to indicate the position of uploaded images.
140
+ The model is optimized for multi-image reasoning, while preserving the ability to chat about text and images in a single conversation.
141
+ (The model currently serving is [🤗 TIGER-Lab/Mantis-8B-Idefics2](https://huggingface.co/TIGER-Lab/Mantis-8B-Idefics2))
142
+ """)
143
+
144
+ chatbot = gr.Chatbot(line_breaks=True)
145
+ chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload images. Please use <image> to indicate the position of uploaded images", show_label=True)
146
+
147
+ chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
148
+
149
+ """
150
+ with gr.Accordion(label='Advanced options', open=False):
151
+ temperature = gr.Slider(
152
+ label='Temperature',
153
+ minimum=0.1,
154
+ maximum=2.0,
155
+ step=0.1,
156
+ value=0.2,
157
+ interactive=True
158
+ )
159
+ top_p = gr.Slider(
160
+ label='Top-p',
161
+ minimum=0.05,
162
+ maximum=1.0,
163
+ step=0.05,
164
+ value=1.0,
165
+ interactive=True
166
+ )
167
+ """
168
+
169
+ bot_msg = chat_msg.success(bot, chatbot, chatbot, api_name="bot_response")
170
+
171
+ chatbot.like(print_like_dislike, None, None)
172
+
173
+ with gr.Row():
174
+ send_button = gr.Button("Send")
175
+ clear_button = gr.ClearButton([chatbot, chat_input])
176
+
177
+ send_button.click(
178
+ add_message, [chatbot, chat_input], [chatbot, chat_input]
179
+ ).then(
180
+ bot, chatbot, chatbot, api_name="bot_response"
181
+ )
182
+
183
+ gr.Examples(
184
+ examples=[
185
+ {
186
+ "text": "<image> <image> <image> Which image shows a different mood of character from the others?",
187
+ "files": ["./examples/image12.jpg", "./examples/image13.jpg", "./examples/image14.jpg"]
188
+ },
189
+ {
190
+ "text": "<image> <image> What's the difference between these two images? Please describe as much as you can.",
191
+ "files": ["./examples/image1.jpg", "./examples/image2.jpg"]
192
+ },
193
+ {
194
+ "text": "<image> <image> Which image shows an older dog?",
195
+ "files": ["./examples/image8.jpg", "./examples/image9.jpg"]
196
+ },
197
+ {
198
+ "text": "Write a description for the given image sequence in a single paragraph, what is happening in this episode?",
199
+ "files": ["./examples/image3.jpg", "./examples/image4.jpg", "./examples/image5.jpg", "./examples/image6.jpg", "./examples/image7.jpg"]
200
+ },
201
+ {
202
+ "text": "<image> <image> How many dices are there in image 1 and image 2 respectively?",
203
+ "files": ["./examples/image10.jpg", "./examples/image15.jpg"]
204
+ },
205
+ ],
206
+ inputs=[chat_input],
207
+ )
208
+
209
+ gr.Markdown("""
210
+ ## Citation
211
+ ```
212
+ @article{jiang2024mantis,
213
+ title={MANTIS: Interleaved Multi-Image Instruction Tuning},
214
+ author={Jiang, Dongfu and He, Xuan and Zeng, Huaye and Wei, Con and Ku, Max and Liu, Qian and Chen, Wenhu},
215
+ journal={arXiv preprint arXiv:2405.01483},
216
+ year={2024}
217
+ }
218
+ ```""")
219
+ return demo
220
+
221
+
222
+ if __name__ == "__main__":
223
+ demo = build_demo()
224
+ demo.launch()
app.py → app_mllava.py RENAMED
File without changes
requirements.txt CHANGED
@@ -1,5 +1,5 @@
1
  torch
2
- transformers
3
  Pillow
4
  gradio
5
  spaces
 
1
  torch
2
+ transformers>=4.41.0
3
  Pillow
4
  gradio
5
  spaces