DongfuJiang
commited on
Commit
·
86744eb
1
Parent(s):
c89a453
update
Browse files- app.py +2 -2
- models/conversation.py +33 -1
- models/mllava/__init__.py +1 -0
- models/mllava/modeling_llava.py +8 -3
- models/mllava/processing_llava.py +124 -10
- models/mllava/utils.py +99 -35
app.py
CHANGED
@@ -5,8 +5,8 @@ import time
|
|
5 |
from PIL import Image
|
6 |
from models.mllava import MLlavaProcessor, LlavaForConditionalGeneration, chat_mllava, MLlavaForConditionalGeneration
|
7 |
from typing import List
|
8 |
-
processor = MLlavaProcessor.from_pretrained("TIGER-Lab/Mantis-
|
9 |
-
model = LlavaForConditionalGeneration.from_pretrained("TIGER-Lab/Mantis-
|
10 |
|
11 |
@spaces.GPU
|
12 |
def generate(text:str, images:List[Image.Image], history: List[dict], **kwargs):
|
|
|
5 |
from PIL import Image
|
6 |
from models.mllava import MLlavaProcessor, LlavaForConditionalGeneration, chat_mllava, MLlavaForConditionalGeneration
|
7 |
from typing import List
|
8 |
+
processor = MLlavaProcessor.from_pretrained("TIGER-Lab/Mantis-8B-siglip-llama3")
|
9 |
+
model = LlavaForConditionalGeneration.from_pretrained("TIGER-Lab/Mantis-8B-siglip-llama3")
|
10 |
|
11 |
@spaces.GPU
|
12 |
def generate(text:str, images:List[Image.Image], history: List[dict], **kwargs):
|
models/conversation.py
CHANGED
@@ -10,6 +10,7 @@ class SeparatorStyle(Enum):
|
|
10 |
MPT = auto()
|
11 |
PLAIN = auto()
|
12 |
LLAMA_2 = auto()
|
|
|
13 |
MFuyu = auto()
|
14 |
|
15 |
|
@@ -30,6 +31,7 @@ class Conversation:
|
|
30 |
def get_prompt(self):
|
31 |
messages = self.messages
|
32 |
if len(messages) > 0 and type(messages[0][1]) is tuple:
|
|
|
33 |
messages = self.messages.copy()
|
34 |
init_role, init_msg = messages[0].copy()
|
35 |
init_msg = init_msg[0].replace("<image>", "").strip()
|
@@ -39,7 +41,6 @@ class Conversation:
|
|
39 |
messages.insert(1, (self.roles[1], "Received."))
|
40 |
else:
|
41 |
messages[0] = (init_role, "<image>" + init_msg)
|
42 |
-
|
43 |
if self.sep_style == SeparatorStyle.SINGLE:
|
44 |
ret = self.system + self.sep
|
45 |
for role, message in messages:
|
@@ -89,6 +90,15 @@ class Conversation:
|
|
89 |
else:
|
90 |
ret += ""
|
91 |
ret = ret.lstrip(self.sep)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
elif self.sep_style == SeparatorStyle.MFuyu:
|
93 |
seps = [self.sep, self.sep2]
|
94 |
ret = self.system + "\n"
|
@@ -393,6 +403,25 @@ conv_mllava_v1_mmtag = Conversation(
|
|
393 |
version="v1_mmtag",
|
394 |
)
|
395 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
|
397 |
default_conversation = conv_mfuyu_v1
|
398 |
conv_templates = {
|
@@ -409,6 +438,9 @@ conv_templates = {
|
|
409 |
"llava_v1": conv_llava_v1,
|
410 |
"v1_mmtag": conv_llava_v1_mmtag,
|
411 |
"llava_llama_2": conv_llava_llama_2,
|
|
|
|
|
|
|
412 |
|
413 |
"mpt": conv_mpt,
|
414 |
}
|
|
|
10 |
MPT = auto()
|
11 |
PLAIN = auto()
|
12 |
LLAMA_2 = auto()
|
13 |
+
LLAMA_3 = auto()
|
14 |
MFuyu = auto()
|
15 |
|
16 |
|
|
|
31 |
def get_prompt(self):
|
32 |
messages = self.messages
|
33 |
if len(messages) > 0 and type(messages[0][1]) is tuple:
|
34 |
+
|
35 |
messages = self.messages.copy()
|
36 |
init_role, init_msg = messages[0].copy()
|
37 |
init_msg = init_msg[0].replace("<image>", "").strip()
|
|
|
41 |
messages.insert(1, (self.roles[1], "Received."))
|
42 |
else:
|
43 |
messages[0] = (init_role, "<image>" + init_msg)
|
|
|
44 |
if self.sep_style == SeparatorStyle.SINGLE:
|
45 |
ret = self.system + self.sep
|
46 |
for role, message in messages:
|
|
|
90 |
else:
|
91 |
ret += ""
|
92 |
ret = ret.lstrip(self.sep)
|
93 |
+
elif self.sep_style == SeparatorStyle.LLAMA_3:
|
94 |
+
ret = self.system + self.sep
|
95 |
+
for role, message in messages:
|
96 |
+
if message:
|
97 |
+
if type(message) is tuple:
|
98 |
+
message, _, _ = message
|
99 |
+
ret += f"<|start_header_id|>{role}<|end_header_id|>\n\n" + message + self.sep
|
100 |
+
else:
|
101 |
+
ret += f"<|start_header_id|>{role}<|end_header_id|>\n\n"
|
102 |
elif self.sep_style == SeparatorStyle.MFuyu:
|
103 |
seps = [self.sep, self.sep2]
|
104 |
ret = self.system + "\n"
|
|
|
403 |
version="v1_mmtag",
|
404 |
)
|
405 |
|
406 |
+
conv_mllava_v1 = Conversation(
|
407 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
408 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
409 |
+
roles=("USER", "ASSISTANT"),
|
410 |
+
version="v1",
|
411 |
+
messages=(),
|
412 |
+
offset=0,
|
413 |
+
sep_style=SeparatorStyle.SINGLE,
|
414 |
+
sep="</s>",
|
415 |
+
)
|
416 |
+
|
417 |
+
conv_llama_3 = Conversation(
|
418 |
+
system="<|start_header_id|>system<|end_header_id|>\n\nYou are a pirate chatbot who always responds in pirate speak!",
|
419 |
+
roles=("user", "assistant"),
|
420 |
+
messages=(),
|
421 |
+
offset=0,
|
422 |
+
sep_style=SeparatorStyle.LLAMA_3,
|
423 |
+
sep="<|eot_id|>",
|
424 |
+
)
|
425 |
|
426 |
default_conversation = conv_mfuyu_v1
|
427 |
conv_templates = {
|
|
|
438 |
"llava_v1": conv_llava_v1,
|
439 |
"v1_mmtag": conv_llava_v1_mmtag,
|
440 |
"llava_llama_2": conv_llava_llama_2,
|
441 |
+
"llama_3": conv_llama_3,
|
442 |
+
"mllava_v1": conv_mllava_v1,
|
443 |
+
"mllava_v1_mmtag": conv_mllava_v1_mmtag,
|
444 |
|
445 |
"mpt": conv_mpt,
|
446 |
}
|
models/mllava/__init__.py
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
from .modeling_llava import LlavaForConditionalGeneration, MLlavaForConditionalGeneration
|
2 |
from .processing_llava import MLlavaProcessor
|
|
|
3 |
from .utils import chat_mllava
|
|
|
1 |
from .modeling_llava import LlavaForConditionalGeneration, MLlavaForConditionalGeneration
|
2 |
from .processing_llava import MLlavaProcessor
|
3 |
+
from .configuration_llava import LlavaConfig
|
4 |
from .utils import chat_mllava
|
models/mllava/modeling_llava.py
CHANGED
@@ -249,15 +249,15 @@ LLAVA_INPUTS_DOCSTRING = r"""
|
|
249 |
LLAVA_START_DOCSTRING,
|
250 |
)
|
251 |
class LlavaForConditionalGeneration(LlavaPreTrainedModel):
|
252 |
-
def __init__(self, config: LlavaConfig):
|
253 |
super().__init__(config)
|
254 |
-
self.vision_tower = AutoModel.from_config(config.vision_config)
|
255 |
|
256 |
self.multi_modal_projector = LlavaMultiModalProjector(config)
|
257 |
self.vocab_size = config.vocab_size
|
258 |
self.language_model = AutoModelForCausalLM.from_config(
|
259 |
config.text_config, attn_implementation=config._attn_implementation
|
260 |
-
)
|
261 |
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
262 |
self.post_init()
|
263 |
|
@@ -428,6 +428,11 @@ class LlavaForConditionalGeneration(LlavaPreTrainedModel):
|
|
428 |
|
429 |
# 2. Merge text and images
|
430 |
if pixel_values is not None and input_ids.shape[1] != 1:
|
|
|
|
|
|
|
|
|
|
|
431 |
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
|
432 |
# this is not memory efficient at all (output_hidden_states=True) will save all the hidden stated.
|
433 |
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
|
|
|
249 |
LLAVA_START_DOCSTRING,
|
250 |
)
|
251 |
class LlavaForConditionalGeneration(LlavaPreTrainedModel):
|
252 |
+
def __init__(self, config: LlavaConfig, vision_tower=None, language_model=None):
|
253 |
super().__init__(config)
|
254 |
+
self.vision_tower = AutoModel.from_config(config.vision_config) if vision_tower is None else vision_tower
|
255 |
|
256 |
self.multi_modal_projector = LlavaMultiModalProjector(config)
|
257 |
self.vocab_size = config.vocab_size
|
258 |
self.language_model = AutoModelForCausalLM.from_config(
|
259 |
config.text_config, attn_implementation=config._attn_implementation
|
260 |
+
) if language_model is None else language_model
|
261 |
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
262 |
self.post_init()
|
263 |
|
|
|
428 |
|
429 |
# 2. Merge text and images
|
430 |
if pixel_values is not None and input_ids.shape[1] != 1:
|
431 |
+
if isinstance(pixel_values, list):
|
432 |
+
pixel_values = torch.cat([x for x in pixel_values if x is not None], dim=0)
|
433 |
+
# for siglip, need to transform the pixel_values to the right data type
|
434 |
+
if pixel_values.dtype != self.vision_tower.dtype:
|
435 |
+
pixel_values = pixel_values.type(self.vision_tower.dtype)
|
436 |
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
|
437 |
# this is not memory efficient at all (output_hidden_states=True) will save all the hidden stated.
|
438 |
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
|
models/mllava/processing_llava.py
CHANGED
@@ -16,7 +16,8 @@
|
|
16 |
Processor class for Llava.
|
17 |
"""
|
18 |
|
19 |
-
|
|
|
20 |
from typing import List, Optional, Union, Dict
|
21 |
|
22 |
# from ...feature_extraction_utils import BatchFeature
|
@@ -30,6 +31,9 @@ from transformers.image_utils import ImageInput
|
|
30 |
from transformers.processing_utils import ProcessorMixin
|
31 |
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
32 |
from transformers.utils import TensorType
|
|
|
|
|
|
|
33 |
|
34 |
from PIL import Image
|
35 |
import logging
|
@@ -52,8 +56,8 @@ class MLlavaProcessor(ProcessorMixin):
|
|
52 |
"""
|
53 |
|
54 |
attributes = ["image_processor", "tokenizer"]
|
55 |
-
image_processor_class = "CLIPImageProcessor"
|
56 |
-
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
|
57 |
|
58 |
def __init__(self, image_processor=None, tokenizer=None):
|
59 |
super().__init__(image_processor, tokenizer)
|
@@ -109,7 +113,7 @@ class MLlavaProcessor(ProcessorMixin):
|
|
109 |
if i < num_images:
|
110 |
text[i] = t + "<image>"
|
111 |
text = "".join(text)
|
112 |
-
logger.warning("Number of <image> tokens exceeds number of images. Automatically removing extra tokens at the end of the text.")
|
113 |
# raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.")
|
114 |
texts = [text]
|
115 |
elif isinstance(text, list):
|
@@ -135,7 +139,7 @@ class MLlavaProcessor(ProcessorMixin):
|
|
135 |
if j < num_images:
|
136 |
t[j] = s + "<image>"
|
137 |
t = "".join(t)
|
138 |
-
logger.warning("Number of <image> tokens exceeds number of images. Automatically removing extra tokens at the end of the text.")
|
139 |
# raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.")
|
140 |
text[i] = t
|
141 |
texts = text
|
@@ -171,6 +175,7 @@ class MLlavaProcessor(ProcessorMixin):
|
|
171 |
truncation: Union[bool, str, TruncationStrategy] = None,
|
172 |
max_length=None,
|
173 |
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
|
|
174 |
) -> BatchFeature:
|
175 |
"""
|
176 |
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
@@ -218,13 +223,14 @@ class MLlavaProcessor(ProcessorMixin):
|
|
218 |
`None`).
|
219 |
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
220 |
"""
|
221 |
-
|
|
|
222 |
if images is not None:
|
223 |
pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"] # [batch_size, num_channels, height, width], e.g. [1, 3, 336, 336]
|
224 |
else:
|
225 |
pixel_values = None
|
226 |
text_inputs = self.tokenizer(
|
227 |
-
|
228 |
)
|
229 |
# text_inputs:
|
230 |
# 1. input_ids: [batch_size, sequence_length], e.g. [1, 6]
|
@@ -259,9 +265,117 @@ class MLlavaProcessor(ProcessorMixin):
|
|
259 |
results = {}
|
260 |
assert len(model_inputs) == 1, "This method only supports a single input, but get {} inputs".format(len(model_inputs))
|
261 |
for k in model_inputs[0].keys():
|
262 |
-
if
|
263 |
-
results[k] =
|
264 |
else:
|
265 |
-
results[k] =
|
266 |
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
|
|
16 |
Processor class for Llava.
|
17 |
"""
|
18 |
|
19 |
+
import os
|
20 |
+
import json
|
21 |
from typing import List, Optional, Union, Dict
|
22 |
|
23 |
# from ...feature_extraction_utils import BatchFeature
|
|
|
31 |
from transformers.processing_utils import ProcessorMixin
|
32 |
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
33 |
from transformers.utils import TensorType
|
34 |
+
from transformers.processing_utils import transformers_module
|
35 |
+
from transformers.utils.hub import is_remote_url, download_url, cached_file, is_offline_mode
|
36 |
+
from transformers.utils import IMAGE_PROCESSOR_NAME
|
37 |
|
38 |
from PIL import Image
|
39 |
import logging
|
|
|
56 |
"""
|
57 |
|
58 |
attributes = ["image_processor", "tokenizer"]
|
59 |
+
image_processor_class = ("CLIPImageProcessor", "SiglipImageProcessor")
|
60 |
+
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast", "PreTrainedTokenizerFast")
|
61 |
|
62 |
def __init__(self, image_processor=None, tokenizer=None):
|
63 |
super().__init__(image_processor, tokenizer)
|
|
|
113 |
if i < num_images:
|
114 |
text[i] = t + "<image>"
|
115 |
text = "".join(text)
|
116 |
+
logger.warning(f"Number of <image> tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.")
|
117 |
# raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.")
|
118 |
texts = [text]
|
119 |
elif isinstance(text, list):
|
|
|
139 |
if j < num_images:
|
140 |
t[j] = s + "<image>"
|
141 |
t = "".join(t)
|
142 |
+
logger.warning(f"Number of <image> tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.")
|
143 |
# raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.")
|
144 |
text[i] = t
|
145 |
texts = text
|
|
|
175 |
truncation: Union[bool, str, TruncationStrategy] = None,
|
176 |
max_length=None,
|
177 |
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
178 |
+
add_image_ids: bool = True,
|
179 |
) -> BatchFeature:
|
180 |
"""
|
181 |
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
|
|
223 |
`None`).
|
224 |
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
225 |
"""
|
226 |
+
if add_image_ids:
|
227 |
+
text, images = self.preprocess_interleaved_images_and_text(text, images)
|
228 |
if images is not None:
|
229 |
pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"] # [batch_size, num_channels, height, width], e.g. [1, 3, 336, 336]
|
230 |
else:
|
231 |
pixel_values = None
|
232 |
text_inputs = self.tokenizer(
|
233 |
+
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
|
234 |
)
|
235 |
# text_inputs:
|
236 |
# 1. input_ids: [batch_size, sequence_length], e.g. [1, 6]
|
|
|
265 |
results = {}
|
266 |
assert len(model_inputs) == 1, "This method only supports a single input, but get {} inputs".format(len(model_inputs))
|
267 |
for k in model_inputs[0].keys():
|
268 |
+
if k == "pixel_values":
|
269 |
+
results[k] = [inputs[k] if inputs[k] is not None else None for inputs in model_inputs]
|
270 |
else:
|
271 |
+
results[k] = torch.cat([inputs[k] for inputs in model_inputs], dim=0)
|
272 |
return results
|
273 |
+
|
274 |
+
@classmethod
|
275 |
+
def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
276 |
+
args = []
|
277 |
+
|
278 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
279 |
+
force_download = kwargs.pop("force_download", False)
|
280 |
+
resume_download = kwargs.pop("resume_download", False)
|
281 |
+
proxies = kwargs.pop("proxies", None)
|
282 |
+
token = kwargs.pop("token", None)
|
283 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
284 |
+
revision = kwargs.pop("revision", None)
|
285 |
+
subfolder = kwargs.pop("subfolder", "")
|
286 |
+
|
287 |
+
from_pipeline = kwargs.pop("_from_pipeline", None)
|
288 |
+
from_auto_class = kwargs.pop("_from_auto", False)
|
289 |
+
|
290 |
+
user_agent = {"file_type": "processor", "from_auto_class": from_auto_class}
|
291 |
+
if from_pipeline is not None:
|
292 |
+
user_agent["using_pipeline"] = from_pipeline
|
293 |
+
|
294 |
+
if is_offline_mode() and not local_files_only:
|
295 |
+
logger.info("Offline mode: forcing local_files_only=True")
|
296 |
+
local_files_only = True
|
297 |
+
|
298 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
299 |
+
is_local = os.path.isdir(pretrained_model_name_or_path)
|
300 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
301 |
+
processor_file = os.path.join(pretrained_model_name_or_path, IMAGE_PROCESSOR_NAME)
|
302 |
+
if os.path.isfile(pretrained_model_name_or_path):
|
303 |
+
resolved_processor_file = pretrained_model_name_or_path
|
304 |
+
is_local = True
|
305 |
+
elif is_remote_url(pretrained_model_name_or_path):
|
306 |
+
processor_file = pretrained_model_name_or_path
|
307 |
+
resolved_processor_file = download_url(pretrained_model_name_or_path)
|
308 |
+
else:
|
309 |
+
processor_file = IMAGE_PROCESSOR_NAME
|
310 |
+
try:
|
311 |
+
# Load from local folder or from cache or download from model Hub and cache
|
312 |
+
resolved_processor_file = cached_file(
|
313 |
+
pretrained_model_name_or_path,
|
314 |
+
processor_file,
|
315 |
+
cache_dir=cache_dir,
|
316 |
+
force_download=force_download,
|
317 |
+
proxies=proxies,
|
318 |
+
resume_download=resume_download,
|
319 |
+
local_files_only=local_files_only,
|
320 |
+
token=token,
|
321 |
+
user_agent=user_agent,
|
322 |
+
revision=revision,
|
323 |
+
subfolder=subfolder,
|
324 |
+
_raise_exceptions_for_missing_entries=True,
|
325 |
+
)
|
326 |
+
except EnvironmentError:
|
327 |
+
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
|
328 |
+
# the original exception.
|
329 |
+
raise
|
330 |
+
except Exception:
|
331 |
+
# For any other exception, we throw a generic error.
|
332 |
+
raise EnvironmentError(
|
333 |
+
f"Can't load processor for '{pretrained_model_name_or_path}'. If you were trying to load"
|
334 |
+
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the"
|
335 |
+
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
|
336 |
+
f" directory containing a {IMAGE_PROCESSOR_NAME} file"
|
337 |
+
)
|
338 |
+
|
339 |
+
# Existing processors on the Hub created before #27761 being merged don't have `processor_config.json` (if not
|
340 |
+
# updated afterward), and we need to keep `from_pretrained` work. So here it fallbacks to the empty dict.
|
341 |
+
# (`cached_file` called using `_raise_exceptions_for_missing_entries=False` to avoid exception)
|
342 |
+
# However, for models added in the future, we won't get the expected error if this file is missing.
|
343 |
+
if resolved_processor_file is None:
|
344 |
+
image_processor_dict = {}
|
345 |
+
|
346 |
+
try:
|
347 |
+
# Load processor dict
|
348 |
+
with open(resolved_processor_file, "r", encoding="utf-8") as reader:
|
349 |
+
text = reader.read()
|
350 |
+
image_processor_dict = json.loads(text)
|
351 |
+
|
352 |
+
except json.JSONDecodeError:
|
353 |
+
raise EnvironmentError(
|
354 |
+
f"It looks like the config file at '{resolved_processor_file}' is not a valid JSON file."
|
355 |
+
)
|
356 |
+
|
357 |
+
for attribute_name in cls.attributes:
|
358 |
+
class_name = getattr(cls, f"{attribute_name}_class")
|
359 |
+
if isinstance(class_name, tuple):
|
360 |
+
if attribute_name == "tokenizer":
|
361 |
+
classes = tuple(getattr(transformers_module, n) if n is not None else None for n in class_name)
|
362 |
+
use_fast = kwargs.get("use_fast", True)
|
363 |
+
if use_fast and classes[1] is not None:
|
364 |
+
attribute_class = classes[1]
|
365 |
+
else:
|
366 |
+
attribute_class = classes[0]
|
367 |
+
elif attribute_name == "image_processor":
|
368 |
+
image_processor_type = image_processor_dict.get("image_processor_type", None)
|
369 |
+
if image_processor_type is not None:
|
370 |
+
assert image_processor_type in class_name, f"Invalid image processor type: {image_processor_type}"
|
371 |
+
attribute_class = getattr(transformers_module, image_processor_type)
|
372 |
+
else:
|
373 |
+
attribute_class = getattr(transformers_module, class_name[0])
|
374 |
+
else:
|
375 |
+
raise ValueError(f"Invalid attribute name: {attribute_name}")
|
376 |
+
else:
|
377 |
+
attribute_class = getattr(transformers_module, class_name)
|
378 |
+
|
379 |
+
args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs))
|
380 |
+
return args
|
381 |
|
models/mllava/utils.py
CHANGED
@@ -2,7 +2,9 @@ import PIL
|
|
2 |
import torch
|
3 |
from .modeling_llava import LlavaForConditionalGeneration
|
4 |
from .processing_llava import MLlavaProcessor
|
5 |
-
from ..conversation import conv_mllava_v1_mmtag as default_conv
|
|
|
|
|
6 |
from typing import List, Tuple, Union, Tuple
|
7 |
|
8 |
def chat_mllava(
|
@@ -12,7 +14,6 @@ def chat_mllava(
|
|
12 |
processor:MLlavaProcessor,
|
13 |
max_input_length:int=None,
|
14 |
history:List[dict]=None,
|
15 |
-
stream:bool=False,
|
16 |
**kwargs) -> Tuple[str, List[dict]]:
|
17 |
"""
|
18 |
Chat with the Mllava model
|
@@ -29,7 +30,17 @@ def chat_mllava(
|
|
29 |
|
30 |
|
31 |
"""
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
conv.messages = []
|
34 |
if history is not None:
|
35 |
for message in history:
|
@@ -38,17 +49,8 @@ def chat_mllava(
|
|
38 |
conv.append_message(message["role"], message["text"])
|
39 |
else:
|
40 |
history = []
|
41 |
-
|
42 |
-
|
43 |
-
conv.append_message(conv.roles[0], text)
|
44 |
-
conv.append_message(conv.roles[1], "")
|
45 |
-
history.append({"role": conv.roles[0], "text": text})
|
46 |
-
history.append({"role": conv.roles[1], "text": ""})
|
47 |
-
else:
|
48 |
-
assert history, "The history should not be empty if the text is None"
|
49 |
-
assert history[-1]['role'] == conv.roles[1], "The last message in the history should be the assistant, an empty message"
|
50 |
-
assert history[-2]['text'], "The last user message in the history should not be empty"
|
51 |
-
assert history[-1]['text'] == "", "The last assistant message in the history should be empty"
|
52 |
|
53 |
prompt = conv.get_prompt()
|
54 |
if images:
|
@@ -57,27 +59,89 @@ def chat_mllava(
|
|
57 |
images[i] = PIL.Image.open(images[i])
|
58 |
|
59 |
inputs = processor(images=images, text=prompt, return_tensors="pt", truncation=True, max_length=max_input_length)
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
if stream:
|
63 |
-
from transformers import TextIteratorStreamer
|
64 |
-
from threading import Thread
|
65 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
66 |
-
kwargs["streamer"] = streamer
|
67 |
-
inputs.update(kwargs)
|
68 |
-
thread = Thread(target=model.generate, kwargs=inputs)
|
69 |
-
thread.start()
|
70 |
-
for _output in streamer:
|
71 |
-
history[-1]["text"] += _output
|
72 |
-
yield history[-1]["text"], history
|
73 |
-
else:
|
74 |
-
output_ids = model.generate(**inputs, **kwargs)
|
75 |
-
output_ids = output_ids[0]
|
76 |
-
|
77 |
-
# remove the input tokens
|
78 |
-
generated_ids = output_ids[inputs["input_ids"].shape[-1]:]
|
79 |
-
generated_text = processor.decode(generated_ids, skip_special_tokens=True)
|
80 |
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
from .modeling_llava import LlavaForConditionalGeneration
|
4 |
from .processing_llava import MLlavaProcessor
|
5 |
+
# from ..conversation import conv_mllava_v1_mmtag as default_conv
|
6 |
+
from ..conversation import conv_mllava_v1 as default_conv, conv_templates
|
7 |
+
|
8 |
from typing import List, Tuple, Union, Tuple
|
9 |
|
10 |
def chat_mllava(
|
|
|
14 |
processor:MLlavaProcessor,
|
15 |
max_input_length:int=None,
|
16 |
history:List[dict]=None,
|
|
|
17 |
**kwargs) -> Tuple[str, List[dict]]:
|
18 |
"""
|
19 |
Chat with the Mllava model
|
|
|
30 |
|
31 |
|
32 |
"""
|
33 |
+
if "llama-3" in model.language_model.name_or_path.lower():
|
34 |
+
conv = conv_templates['llama_3']
|
35 |
+
terminators = [
|
36 |
+
processor.tokenizer.eos_token_id,
|
37 |
+
processor.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
38 |
+
]
|
39 |
+
else:
|
40 |
+
conv = default_conv
|
41 |
+
terminators = None
|
42 |
+
kwargs["eos_token_id"] = terminators
|
43 |
+
conv = conv.copy()
|
44 |
conv.messages = []
|
45 |
if history is not None:
|
46 |
for message in history:
|
|
|
49 |
conv.append_message(message["role"], message["text"])
|
50 |
else:
|
51 |
history = []
|
52 |
+
conv.append_message(conv.roles[0], text)
|
53 |
+
conv.append_message(conv.roles[1], "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
prompt = conv.get_prompt()
|
56 |
if images:
|
|
|
59 |
images[i] = PIL.Image.open(images[i])
|
60 |
|
61 |
inputs = processor(images=images, text=prompt, return_tensors="pt", truncation=True, max_length=max_input_length)
|
62 |
+
for k, v in inputs.items():
|
63 |
+
if v is not None:
|
64 |
+
if isinstance(v, torch.Tensor):
|
65 |
+
inputs[k] = v.to(model.device)
|
66 |
+
elif isinstance(v, list):
|
67 |
+
inputs[k] = [x.to(model.device) for x in v]
|
68 |
+
else:
|
69 |
+
raise ValueError(f"Invalid input type: {type(v)}")
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
output_ids = model.generate(**inputs, **kwargs)
|
73 |
+
output_ids = output_ids[0]
|
74 |
+
|
75 |
+
# remove the input tokens
|
76 |
+
generated_ids = output_ids[inputs["input_ids"].shape[-1]:]
|
77 |
+
generated_text = processor.decode(generated_ids, skip_special_tokens=True)
|
78 |
+
|
79 |
+
history.append({"role": conv.roles[0], "text": text})
|
80 |
+
history.append({"role": conv.roles[1], "text": generated_text})
|
81 |
+
|
82 |
+
return generated_text, history
|
83 |
+
|
84 |
+
|
85 |
+
def chat_mllava_stream(
|
86 |
+
text:str,
|
87 |
+
images: List[Union[PIL.Image.Image, str]],
|
88 |
+
model:LlavaForConditionalGeneration,
|
89 |
+
processor:MLlavaProcessor,
|
90 |
+
max_input_length:int=None,
|
91 |
+
history:List[dict]=None,
|
92 |
+
**kwargs) -> Tuple[str, List[dict]]:
|
93 |
+
"""
|
94 |
+
Chat with the Mllava model
|
95 |
+
Args:
|
96 |
+
text: str, the text to be sent to the model, where <image> will be the placeholder for the image
|
97 |
+
images: List[PIL.Image.Image], the images to be sent to the model, or None
|
98 |
+
model: LlavaForConditionalGeneration, the model to be used
|
99 |
+
processor: MLlavaProcessor, the processor to be used
|
100 |
+
max_input_length: int, the maximum input length
|
101 |
+
history: List[dict], list of messages in the conversation as history. Each message is a dictionary {"role": "ASSISTANT/USER", "text": "the message"}. If None, the conversation will start from scratch
|
102 |
+
kwargs: dict, the generation kwargs
|
103 |
+
Returns:
|
104 |
+
Tuple[str, List[dict]], the generated text and the history of the conversation
|
105 |
|
106 |
+
|
107 |
+
"""
|
108 |
+
conv = default_conv.copy()
|
109 |
+
conv.messages = []
|
110 |
+
if history is not None:
|
111 |
+
for message in history:
|
112 |
+
message["role"] = message["role"].upper()
|
113 |
+
assert message["role"] in conv.roles
|
114 |
+
conv.append_message(message["role"], message["text"])
|
115 |
+
else:
|
116 |
+
history = []
|
117 |
+
conv.append_message(conv.roles[0], text)
|
118 |
+
conv.append_message(conv.roles[1], "")
|
119 |
+
|
120 |
+
prompt = conv.get_prompt()
|
121 |
+
if images:
|
122 |
+
for i in range(len(images)):
|
123 |
+
if isinstance(images[i], str):
|
124 |
+
images[i] = PIL.Image.open(images[i])
|
125 |
+
|
126 |
+
inputs = processor(images=images, text=prompt, return_tensors="pt", truncation=True, max_length=max_input_length)
|
127 |
+
for k, v in inputs.items():
|
128 |
+
if v is not None:
|
129 |
+
if isinstance(v, torch.Tensor):
|
130 |
+
inputs[k] = v.to(model.device)
|
131 |
+
elif isinstance(v, list):
|
132 |
+
inputs[k] = [x.to(model.device) for x in v]
|
133 |
+
else:
|
134 |
+
raise ValueError(f"Invalid input type: {type(v)}")
|
135 |
+
|
136 |
+
from transformers import TextIteratorStreamer
|
137 |
+
from threading import Thread
|
138 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
139 |
+
kwargs["streamer"] = streamer
|
140 |
+
inputs.update(kwargs)
|
141 |
+
thread = Thread(target=model.generate, kwargs=inputs)
|
142 |
+
thread.start()
|
143 |
+
history.append({"role": conv.roles[0], "text": text})
|
144 |
+
history.append({"role": conv.roles[1], "text": ""})
|
145 |
+
for _output in streamer:
|
146 |
+
history[-1]["text"] += _output
|
147 |
+
yield history[-1]["text"], history
|