import pandas as pd import gradio as gr import csv import json import os import shutil from huggingface_hub import Repository HF_TOKEN = os.environ.get("HF_TOKEN") SUBJECTS = ["Classification", "VQA", "Retrieval", "Grounding"] MODEL_INFO = [ "Models", "Model Size(B)", "Data Source", "Overall", "IND", "OOD", "Classification", "VQA", "Retrieval", "Grounding" ] DATA_TITLE_TYPE = ['markdown', 'str', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number'] # TODO: submission process not implemented yet SUBMISSION_NAME = "" SUBMISSION_URL = "" CSV_DIR = "results.csv" # TODO: Temporary file, to be updated with the actual file COLUMN_NAMES = MODEL_INFO LEADERBOARD_INTRODUCTION = """# MMEB Leaderboard ## Introduction We introduce MMEB, a benchmark for multimodal evaluation of models. The benchmark consists of four tasks: Classification, VQA, Retrieval, and Grounding. Models are evaluated based on 36 datasets. """ TABLE_INTRODUCTION = """""" LEADERBOARD_INFO = """ ## Dataset Summary """ CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" CITATION_BUTTON_TEXT = """""" SUBMIT_INTRODUCTION = """# Submit on MMEB Leaderboard Introduction ## ⚠ Please note that you need to submit the JSON file with the following format: ```json [ { "question_id": 123, "question": "abc", "options": ["abc", "xyz", ...], "answer": "ABC", "answer_index": 1, "category": "abc, "pred": "B", "model_outputs": "" }, ... ] ``` ... """ def get_df(): # TODO: Update this after the hf dataset has been created! # repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN) # repo.git_pull() df = pd.read_csv(CSV_DIR) df['Model Size(B)'] = df['Model Size(B)'].apply(process_model_size) df = df.sort_values(by=['Overall'], ascending=False) return df def add_new_eval( input_file, ): if input_file is None: return "Error! Empty file!" upload_data = json.loads(input_file) print("upload_data:\n", upload_data) data_row = [f'{upload_data["Model"]}', upload_data['Overall']] for subject in SUBJECTS: data_row += [upload_data[subject]] print("data_row:\n", data_row) submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") submission_repo.git_pull() already_submitted = [] with open(CSV_DIR, mode='r') as file: reader = csv.reader(file, delimiter=',') for row in reader: already_submitted.append(row[0]) if data_row[0] not in already_submitted: with open(CSV_DIR, mode='a', newline='') as file: writer = csv.writer(file) writer.writerow(data_row) submission_repo.push_to_hub() print('Submission Successful') else: print('The entry already exists') def refresh_data(): df = get_df() return df[COLUMN_NAMES] def search_and_filter_models(df, query, min_size, max_size): filtered_df = df.copy() if query: filtered_df = filtered_df[filtered_df['Models'].str.contains(query, case=False, na=False)] size_mask = filtered_df['Model Size(B)'].apply(lambda x: (min_size <= 1000.0 <= max_size) if x == 'unknown' else (min_size <= x <= max_size)) filtered_df = filtered_df[size_mask] return filtered_df[COLUMN_NAMES] # def search_and_filter_models(df, query, min_size, max_size): # filtered_df = df.copy() # if query: # filtered_df = filtered_df[filtered_df['Models'].str.contains(query, case=False, na=False)] # def size_filter(x): # if isinstance(x, (int, float)): # return min_size <= x <= max_size # return True # filtered_df = filtered_df[filtered_df['Model Size(B)'].apply(size_filter)] # return filtered_df[COLUMN_NAMES] def search_models(df, query): if query: return df[df['Models'].str.contains(query, case=False, na=False)] return df # def get_size_range(df): # numeric_sizes = df[df['Model Size(B)'].apply(lambda x: isinstance(x, (int, float)))]['Model Size(B)'] # if len(numeric_sizes) > 0: # return float(numeric_sizes.min()), float(numeric_sizes.max()) # return 0, 1000 def get_size_range(df): sizes = df['Model Size(B)'].apply(lambda x: 1000.0 if x == 'unknown' else x) return float(sizes.min()), float(sizes.max()) def process_model_size(size): if pd.isna(size) or size == 'unk': return 'unknown' try: val = float(size) return val except (ValueError, TypeError): return 'unknown' def filter_columns_by_subjects(df, selected_subjects=None): if selected_subjects is None or len(selected_subjects) == 0: return df[COLUMN_NAMES] base_columns = ['Models', 'Model Size(B)', 'Data Source', 'Overall'] selected_columns = base_columns + selected_subjects available_columns = [col for col in selected_columns if col in df.columns] return df[available_columns] def get_subject_choices(): return SUBJECTS