import pandas as pd import gradio as gr import csv import json import os import requests import io import shutil from huggingface_hub import Repository HF_TOKEN = os.environ.get("HF_TOKEN") TASKS = ["Classification", "VQA", "Retrieval", "Grounding"] MODEL_INFO = [ "Models", "Model Size(B)", "Data Source", "Overall", "IND", "OOD", "Classification", "VQA", "Retrieval", "Grounding" ] BASE_COLS = [col for col in MODEL_INFO if col not in TASKS] DATA_TITLE_TYPE = ['markdown', 'str', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number'] SUBMISSION_NAME = "MMEB" SUBMISSION_URL = os.path.join("https://huggingface.co/spaces/TIGER-Lab/", SUBMISSION_NAME) FILE_NAME = "results.csv" CSV_DIR = "./results.csv" COLUMN_NAMES = MODEL_INFO LEADERBOARD_INTRODUCTION = """ # MMEB Leaderboard ## Introduction We introduce a novel benchmark, MMEB (Massive Multimodal Embedding Benchmark), which includes 36 datasets spanning four meta-task categories: classification, visual question answering, retrieval, and visual grounding. MMEB provides a comprehensive framework for training and evaluating embedding models across various combinations of text and image modalities. All tasks are reformulated as ranking tasks, where the model follows instructions, processes a query, and selects the correct target from a set of candidates. The query and target can be an image, text, or a combination of both. MMEB is divided into 20 in-distribution datasets, which can be used for training, and 16 out-of-distribution datasets, reserved for evaluation. The detailed explanation of the benchmark and datasets can be found in our paper: https://doi.org/10.48550/arXiv.2410.05160. """ TABLE_INTRODUCTION = """""" LEADERBOARD_INFO = """ ## Dataset Summary MMEB is organized into four primary meta-task categories: - **Classification**: This category comprises 5 in-distribution and 5 out-of-distribution datasets. Queries consist of instructions and images, optionally accompanied by related text. Targets are class labels, and the number of class labels corresponds to the number of classes in the dataset. \n - IND: ImageNet-1k, N24News, HatefulMemes, VOC2007, SUN397 \n - OOD: Place365, ImageNet-A, ImageNet-R, ObjectNet, Country-211 \n - **Visual Question Answering**: This category includes 6 in-distribution and 4 out-of-distribution datasets. The query consists of an instruction, an image, and a piece of text as the question, while the target is the answer. Each query has 1,000 target candidates: 1 ground truth and 999 distractors. \n - IND: OK-VQA, A-OKVQA, DocVQA, InfographicVQA, ChartQA, Visual7W \n - OOD: ScienceQA, VizWiz, GQA, TextVQA \n - **Information Retrieval**: This category contains 8 in-distribution and 4 out-of-distribution datasets. Both the query and target sides can involve a combination of text, images, and instructions. Similar to the VQA task, each query has 1,000 candidates, with 1 ground truth and 999 distractors. \n - IND: VisDial, CIRR, VisualNews_t2i, VisualNews_i2t, MSCOCO_t2i, MSCOCO_i2t, NIGHTS, WebQA \n - OOD: OVEN, FashionIQ, EDIS, Wiki-SS-NQ \n - **Visual Grounding**: This category includes 1 in-distribution and 3 out-of-distribution datasets, which are adapted from object detection tasks. Queries consist of an instruction, an image, and text referring to a specific region or object within the image. The target may include a cropped image of the object or text describing the same region. Each query includes 1,000 candidates: 1 ground truth and 999 distractors. These distractors may include hard negatives from the same object class, other objects in the image, or random objects from different images. \n - IND: MSCOCO \n - OOD: Visual7W-Pointing, RefCOCO, RefCOCO-Matching \n """ CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" CITATION_BUTTON_TEXT = """""" SUBMIT_INTRODUCTION = """# Submit on MMEB Leaderboard Introduction ## ⚠ Please note that you need to submit the JSON file with the following format: ```json { "Model": "[Model Name]", "Model Size(B)": 1000, "Data Source": "TIGER-Lab", "Overall": 50, "IND": 50, "OOD": 50, "Classification": 50, "VQA": 50, "Retrieval": 50, "Grounding": 50 } ``` Please send us an email at {CONTACT_EMAIL}, attaching the file. We will review your submission and update the leaderboard accordingly. """ def get_df(): # fetch the leaderboard data url = "https://huggingface.co/spaces/TIGER-Lab/MMEB/resolve/main/results.csv" response = requests.get(url, headers={"Authorization": f"Bearer {HF_TOKEN}"}) if response.status_code != 200: import sys sys.exit(f"Error: {response.status_code}") df = pd.read_csv(io.StringIO(response.text)) df.to_csv(CSV_DIR, index=False) # update local file df['Model Size(B)'] = df['Model Size(B)'].apply(process_model_size) df = df.sort_values(by=['Overall'], ascending=False) return df def add_new_eval(input_file): if input_file is None: return "Error! Empty file!" # Load the input json file upload_data = json.loads(input_file) print("upload_data:\n", upload_data) for col in COLUMN_NAMES: if not col in upload_data.keys(): return f"Error! Missing {col} column!" data_row = [f'{upload_data["Model"]}'] for col in ['Overall', 'Model Size(B)', 'IND', 'OOD'] + TASKS: if not col in upload_data.keys(): return f"Error! Missing {col} column!" data_row += [upload_data[col]] print("data_row:\n", data_row) submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="space") submission_repo.git_pull() # Track submitted models already_submitted = [] with open(CSV_DIR, mode='r') as file: reader = csv.reader(file, delimiter=',') for row in reader: already_submitted.append(row[0]) # if not in the existing models list, add it to the csv file if data_row[0] not in already_submitted: with open(CSV_DIR, mode='a', newline='') as file: writer = csv.writer(file) writer.writerow(data_row) try: submission_repo.push_to_hub() print('Submission Successful') except HfHubHTTPError as e: print(f'Error during submission: {e}') except Exception as e: print(f'Unexpected error during submission: {e}') else: print('The model already exists in the leaderboard!') def refresh_data(): df = get_df() return df[COLUMN_NAMES] def search_and_filter_models(df, query, min_size, max_size): filtered_df = df.copy() if query: filtered_df = filtered_df[filtered_df['Models'].str.contains(query, case=False, na=False)] size_mask = filtered_df['Model Size(B)'].apply(lambda x: (min_size <= 1000.0 <= max_size) if x == 'unknown' else (min_size <= x <= max_size)) filtered_df = filtered_df[size_mask] return filtered_df[COLUMN_NAMES] def search_models(df, query): if query: return df[df['Models'].str.contains(query, case=False, na=False)] return df def get_size_range(df): sizes = df['Model Size(B)'].apply(lambda x: 0.0 if x == 'unknown' else x) if (sizes == 0.0).all(): return 0.0, 1000.0 return float(sizes.min()), float(sizes.max()) def process_model_size(size): if pd.isna(size) or size == 'unk': return 'unknown' try: val = float(size) return val except (ValueError, TypeError): return 'unknown' def filter_columns_by_tasks(df, selected_tasks=None): if selected_tasks is None or len(selected_tasks) == 0: return df[COLUMN_NAMES] base_columns = ['Models', 'Model Size(B)', 'Data Source', 'Overall'] selected_columns = base_columns + selected_tasks available_columns = [col for col in selected_columns if col in df.columns] return df[available_columns] def get_task_choices(): return TASKS