import trafilatura import requests import lzma import os import re import time from datetime import datetime import json from pprint import pprint import subprocess import config from utils import * from text_utils import * from llm import * # from crawl4ai import WebCrawler # pip install "crawl4ai @ git+https://github.com/unclecode/crawl4ai.git" # Create an instance of WebCrawler # crawler = WebCrawler() # Warm up the crawler (load necessary models) # crawler.warmup() ## Cách lấy cookies và headers sử dụng https://curlconverter.com cookies = { 'ASP.NET_SessionId': '42i3ivvgk14yd2tnxmddybvq', 'Culture': 'vi', 'Cookie_VB': 'close', 'ruirophaply-covi19': '24', 'SLG_G_WPT_TO': 'vi', 'G_ENABLED_IDPS': 'google', 'SLG_GWPT_Show_Hide_tmp': '1', 'SLG_wptGlobTipTmp': '1', '__zlcmid': '1NOmxyopHgawxjN', '45C5EF': '96780c17-dee3-49b2-9bf7-6335c4348d4f', 'vqc': '0', } headers = { 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7', 'accept-language': 'en-US,en;q=0.9', 'cache-control': 'max-age=0', 'priority': 'u=0, i', 'sec-ch-ua': '"Opera GX";v="111", "Chromium";v="125", "Not.A/Brand";v="24"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': '"Windows"', 'sec-fetch-dest': 'document', 'sec-fetch-mode': 'navigate', 'sec-fetch-site': 'none', 'sec-fetch-user': '?1', 'sec-gpc': '1', 'upgrade-insecure-requests': '1', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/125.0.0.0 Safari/537.36 OPR/111.0.0.0', # 'User-Agent': "Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Mobile Safari/537.36", } def norm_url_and_gen_filename(url): url = url.strip() # loại bỏ ký tự trống ở đầu và cuối if url[-1] == "/": url = url[:-1] # loại bỏ "/" ở cuối # init filename và tạo sub folder nếu chưa có filename = f'.cache/{url}' return url, filename def reset_content(url): _, filename = norm_url_and_gen_filename(url) text_filename = filename + ".txt" json_filename = filename + ".json" html_filename = filename + ".html" xz_filename = filename + ".xz" for filename in [ text_filename, json_filename, html_filename, xz_filename, ]: cmd = f"rm -rf '{filename}'"; print(cmd) subprocess.run(cmd, shell = True) # from functools import lru_cache # @lru_cache(maxsize=128) def url_content(url, update_text=None): url, filename = norm_url_and_gen_filename(url) parts = filename.split("/") for i in range(1, len(parts)): path = "/".join(parts[:i]) # print(path) # DEBUG os.makedirs(path, exist_ok=True) text_filename = filename + ".txt" json_filename = filename + ".json" html_filename = filename + ".html" xz_filename = filename + ".xz" # Nếu được yêu cầu update nội dung text của url thì update if update_text is not None: print("\nUPDATE TEXT", filename) text, noise_ratio, max_noise = normalize_text(update_text, get_noise_info = True) # update meta, Lưu lại text và meta meta = json.load(open(json_filename)) meta["updated_at"] = str(datetime.now()) meta["updates_count"] += 1 meta["noise_ratio"] = noise_ratio meta["max_noise"] = max_noise # Cắt ngắn text nếu đầu vào quá dài text = cut_if_too_long(text, meta) with open(json_filename, "wt") as f: f.write(json.dumps(meta, ensure_ascii = False)) with open(text_filename, "wt") as f: f.write(text) # gọi gen_clear_view.py (chạy chậm) ở process riêng get_clear_view(filename) # Re-gen llm contents get_llm_gen_contents(url, use_cache = False) print(CYAN,end=""); print(meta); print(RESET,end="", flush=True) # Nếu tồn tại text_filename thì trả về, # đây có thể là nội dung text đã được chỉnh sửa nên ưu tiên trả về trước if os.path.exists(text_filename): print("\nGOT TEXT", filename, flush=True) norm_text = open(text_filename, "rt").read() return norm_text html = None # Thử đọc nội dung html đã được cache if os.path.exists(xz_filename): try: html = lzma.open(xz_filename,"rt").read() print("\nGOT HTML", filename, flush=True) except: pass blacklist = """ Your connection is not private -----BEGIN CERTIFICATE----- """.strip().split("\n") ## Thử các cách lấy HTML: requests vs crawl4ai vs reader get_html_method = "requests" if html is None: # Thử lần 1 bằng requests print("\nGET HTML", filename, flush=True) try: html = requests.get(url, cookies=cookies, headers=headers) html = str(html.text) # Lưu lại nội dung html vào xz_filename with lzma.open(xz_filename, "wt") as f: f.write(html) except Exception as e: print(f"!!! REQUESTS Error {e} !!!") if isinstance(html, str): for x in blacklist: if x in html: print(f"--{x}--") i = html.find(x) print(f"{RED}!!! REQUESTS đọc lỗi {html[i-30:i+200]} !!!{RESET}") html = None break meta = None ''' if html is None or len(html) < 500: # Thử lần 2 bằng CRAWL4AI print("GET HTML CRAWL4AI", filename, flush=True) get_html_method = "crawl4ai" try: result = crawler.run(url=url) html = result.html # Lưu lại nội dung html vào xz_filename with lzma.open(xz_filename, "wt") as f: f.write(html) # {'title': 'Ngập úng và thiệt hại trên 202.000 ha lúa | baotintuc.vn', 'description': 'Thống kê từ Bộ Nông nghiệp và Phát triển nông thôn, tính đến sáng 13/9, có trên 202.000 ha lúa, gần 39.300 ha hoa màu bị ngập úng, thiệt hại do ảnh hưởng của bão số 3.', 'keywords': None, 'author': 'baotintuc.vn', 'og:type': 'article', 'og:url': 'https://baotintuc.vn/xa-hoi/ngap-ung-va-thiet-hai-tren-202000-ha-lua-20240913095621343.htm', 'og:image': 'https://cdnmedia.baotintuc.vn/Upload/EqV5H9rWgvy9oNikwkHLXA/files/13092024-bao-1.jpg', 'og:image:url': 'https://cdnmedia.baotintuc.vn/Upload/EqV5H9rWgvy9oNikwkHLXA/files/13092024-bao-1.jpg', 'og:image:secure_url': 'https://cdnmedia.baotintuc.vn/Upload/EqV5H9rWgvy9oNikwkHLXA/files/13092024-bao-1.jpg', 'og:image:width': '460', 'og:image:height': '345', 'og:title': 'Ngập úng và thiệt hại trên 202.000 ha lúa', 'og:description': 'Thống kê từ Bộ Nông nghiệp và Phát triển nông thôn, đến sáng 13/9, có trên 202.000 ha lúa, gần 39.300 ha hoa màu bị ngập úng, thiệt hại do ảnh hưởng của bão số 3.', 'twitter: card': 'summary_large_image', 'twitter: image': 'https://cdnmedia.baotintuc.vn/Upload/EqV5H9rWgvy9oNikwkHLXA/files/13092024-bao-1.jpg'} meta = dict(result.metadata) for key in result.metadata.keys(): if "og:" in key or "twitter:" in key: meta.pop(key) except Exception as e: print(f"!!! CRAWL4AI Error {e} !!!") if isinstance(html, str): for x in blacklist: if x in html: i = html.find(x) print(f"{RED}!!! CRAWL4AI đọc lỗi {html[i-30:i+200]} !!!{RESET}") html = None meta = {} break ''' if html is None or len(html) < 500: # Thử lần 3 bằng reader api print("GET HTML READER", filename, flush=True) get_html_method = "reader" try: reader_url = "https://r.jina.ai/" + url # Use below header make https://jina.ai/reader return text not markdown by default html = requests.get(reader_url, headers = { 'X-Return-Format': 'html', }).text # Lưu lại nội dung html vào xz_filename with lzma.open(xz_filename, "wt") as f: f.write(html) except Exception as e: print(f"!!! READER Error {e} !!!") if isinstance(html, str): for x in blacklist: if x in html: i = html.find(x) print(f"{RED}!!! READER đọc lỗi {html[i-30:i+200]} !!!{RESET}") html = None break ## Thử các cách extract text: trafilatura vs llm vs reader extract_method = "trafilatura" # https://trafilatura.readthedocs.io/en/latest/corefunctions.html#extract try: text = trafilatura.extract(html, # favor_recall = True, include_tables = True, include_comments = False, with_metadata = False, ) except: text = "" if meta is None: # Có thể meta đã đc lấy ở crawl4ai try: meta = trafilatura.extract(html, only_with_metadata = True) if meta and len(meta) > 0: # print(meta); input() # DEBUG meta = meta.split("---")[1] splits = re.findall(r'\S+: [^\n]+', meta) meta = { x.split(": ", 1)[0].strip() : x.split(": ", 1)[1].strip() for x in splits } else: meta = {} except: meta = {} # Chuẩn hóa text if text is None: text = "" text, noise_ratio, max_noise = normalize_text(text, get_noise_info = True) print(f">>> {RED}noise_ratio {pretty_num(noise_ratio)}, max_noise {max_noise}{RESET}") MEANINGFUL = 500 MAX_NOISE_RATIO = 0.3 too_short = ( len(text) < MEANINGFUL ) too_noise = ( noise_ratio > MAX_NOISE_RATIO or max_noise > MEANINGFUL ) # ko lấy đc text hoặc text quá ngắn (cào trượt), hoặc text quá noise if text is None or too_short or too_noise: # Lấy text thông qua phương pháp khác print("!!! Đoạn text dưới do trafilatura triết xuất có vấn đề?") print("too short", too_short) print("too noise", too_noise) print("- - - "*6) print(f"{YELLOW}{text}{RESET}") print("- - - "*6) print("!!! Dùng Jina Reader ...") reader_url = "https://r.jina.ai/" + url # Use below header make https://jina.ai/reader return text not markdown by default reader_text = requests.get(reader_url, headers = { 'X-Return-Format': 'text', }).text reader_text, reader_noise_ratio, reader_max_noise = normalize_text(reader_text, get_noise_info = True) # Chuẩn hóa text reader_text, reader_noise_ratio, reader_max_noise = normalize_text(reader_text, get_noise_info = True) reader_too_noise = ( reader_noise_ratio > MAX_NOISE_RATIO or reader_max_noise > MEANINGFUL ) print(f">>> {RED}reader_noise_ratio {pretty_num(reader_noise_ratio)}, reader_max_noise {reader_max_noise}{RESET}") print(f">>> {RED}reader_too_noise {reader_too_noise}{RESET}") signal = int( len(text) * (1 - noise_ratio) ) + 1 reader_signal = int( len(reader_text) * (1 - reader_noise_ratio) ) + 1 samesame = ( abs(signal - reader_signal) / reader_signal ) < 0.2 print(f">>> {RED}samesame {samesame}, original signal {pretty_num(signal)}, reader_signal {pretty_num(reader_signal)}{RESET}") # Nếu bản gốc quá ngắn nhưng bản reader quá noise thì thà chọn ngắn còn hơn original_too_shot_but_reader_too_noise = ( too_short and (samesame or reader_noise_ratio >= 0.5 ) ) original_too_noise_but_reader_even_more_noise = ( too_noise and noise_ratio < reader_noise_ratio and max_noise < reader_max_noise ) if original_too_shot_but_reader_too_noise: print("!!! reader quá noise, chọn bản trafilatura too_short còn hơn.") if original_too_noise_but_reader_even_more_noise: print("!!! reader còn noise hơn bản trafilatura, bỏ qua.") if not original_too_shot_but_reader_too_noise and \ not original_too_noise_but_reader_even_more_noise: choose_original_text = False if reader_too_noise: # vẫn còn noisy lắm, thử dùng readability.js if html is not None and len(html) > 200: html_filename = filename + ".html" with open(html_filename, "wt") as f: f.write(html) abi_text = subprocess.run( f"node node_readability.js '{html_filename}' '{url}'", shell=True, capture_output=True, ).stdout.decode('utf-8') abi_text, abi_noise_ratio, abi_max_noise = \ normalize_text(abi_text, get_noise_info = True) if abi_max_noise < reader_max_noise: print(GREEN, ">>>", abi_text, "<<<", RESET) if len(abi_text) < len(reader_text) and len(text) < len(reader_text): # chuộng text ngắn choose_original_text = True if not choose_original_text: extract_method = "reader" text = reader_text noise_ratio = reader_noise_ratio max_noise = reader_max_noise # update meta, Lưu lại text và meta meta["url"] = url meta["get_html_method"] = get_html_method meta["extract_method"] = extract_method meta["created_at"] = str(datetime.now()) meta["updates_count"] = 0 meta["noise_ratio"] = noise_ratio meta["max_noise"] = max_noise meta["text_origin_len"] = len(text) if "hostname" in meta: meta.pop("hostname") if "sitename" in meta: meta.pop("sitename") # Thêm title và description vào text (nếu có) norm_text = normalize_text(text) text = add_title_desc_to_text(norm_text, meta) # Cắt ngắn text nếu đầu vào quá dài text = cut_if_too_long(text, meta) print(CYAN,end=""); print(meta); print(RESET,end="") with open(json_filename, "wt") as f: f.write(json.dumps(meta, ensure_ascii = False)) with open(text_filename, "wt") as f: f.write(text) get_clear_view(filename) get_llm_gen_contents(url, use_cache = False) return text def get_clear_view(filename): # gọi gen_clear_view.py (chạy chậm) ở process riêng subprocess.run(f"nohup python3 gen_clear_view.py '{filename}' &", shell = True) import time; time.sleep(1) # chờ 1 giây def cut_if_too_long(text, meta, max_words = config.text_max_words): words = text.split() if len(words) > max_words: words = words[ : max_words] threshold = len(" ".join(words)) meta["text_cutoff"] = True meta["text_cutoff_len"] = threshold return text[ : threshold ] else: return text def add_title_desc_to_text(text, meta): content = [] title = meta["title"] if "title" in meta else None description = meta["description"] if "description" in meta else None if title is not None and len(title) > 5: content.append(f"**title**: {title}") if description is not None and len(description) > 10: content.append(f"**description**: {description}") content.append(text) return "\n\n".join(content) def normalize_text(text, get_noise_info = False): text = text.strip() chunks = re.split(r'\s*(?:\n\s*)+', text, flags = re.MULTILINE) text = "\n\n".join([ x for x in chunks if len(x) > 20 ]) if get_noise_info: noise_len = 1 total_len = 1 max_noise = 0 continuous_noise = 0 for x in chunks: n = len(x) total_len += n if n < 80: noise_len += n continuous_noise += n if continuous_noise > max_noise: max_noise = continuous_noise else: continuous_noise = 0 noise_ratio = noise_len / total_len return text, noise_ratio, max_noise else: return text def get_clean_view(url): url, filename = norm_url_and_gen_filename(url) clean_view_filename = filename + "__clean_view.txt" if os.path.exists(clean_view_filename): return open(clean_view_filename, "rt").read() else: return None def get_meta(url): url, filename = norm_url_and_gen_filename(url) json_filename = filename + ".json" return json.load(open(json_filename)) TAGS = "keyphrases figures summary".split() ### def get_llm_gen_contents(url, use_cache = True): url, filename = norm_url_and_gen_filename(url) json_filename = filename + ".json" text_filename = filename + ".txt" if os.path.exists(json_filename): meta = json.load(open(json_filename, "rt")) generated = ( "llm_generated" in meta ) if not use_cache or not generated: text = open(text_filename, "rt").read() marked_text, chunks = add_chunk_markers(text, para = True) raw = extract_keyphrases_figures_summary(marked_text) result = extract_xmls(raw, TAGS) result["raw"] = raw meta["llm_generated"] = result with open(json_filename, "wt") as f: f.write(json.dumps(meta, ensure_ascii = False)) return meta["llm_generated"] else: return { "summary": "Tóm tắt nội dung ... văn bản nói về ...", "keyphrases": ["keywords 1", "keywords 2", "keywords 3"] } default_urls_input = """ https://thuvienphapluat.vn/phap-luat/ho-so-dien-tu-thuc-hien-thu-tuc-hanh-chinh-la-gi-huong-dan-chuan-bi-va-nop-ho-so-dien-tu-khi-thuc-h-155754-140107.html https://video.vnexpress.net/bon-ngay-chong-choi-lu-ngap-gan-3-m-cua-nguoi-dan-thai-nguyen-4791440.html http://danvan.vn/Home/Tin-hoat-dong/Ban-dan-van/18706/Ban-Dan-van-Trung-uong-va-Hoi-Chu-thap-do-Viet-Nam-tham-tang-qua-nhan-dan-bi-anh-huong-bao-so-3-tai-Thai-Nguyen https://baodauthau.vn/thai-nguyen-144-ty-dong-nang-cap-duong-cach-mang-thang-8-tp-song-cong-post164486.html https://baothainguyen.vn/chinh-tri/202409/chu-tich-quoc-hoi-tran-thanh-man-lam-viec-voi-tinh-thai-nguyen-ve-cong-tackhac-phuc-hau-qua-bao-so-3-3f9253f/ https://baothainguyen.vn/giao-duc/202409/dam-bao-dieu-kien-de-hoc-sinh-tro-lai-truong-cham-nhat-ngay-16-9-9742985/ https://baothainguyen.vn/tai-nguyen-moi-truong/202409/khu-khuan-dien-rong-nhung-vung-bi-ngap-lut-tai-tp-thai-nguyen-585273d/ https://baothainguyen.vn/thoi-su-thai-nguyen/202409/dien-luc-tp-thai-nguyen-no-luccap-dien-tro-lai-cho-tren-2000-hotrong-ngay-12-9-da21a20/ https://baothainguyen.vn/xa-hoi/202409/tao-sinh-ke-giam-ngheo-vung-dong-bao-dan-toc-thieu-so-b8f041c/ https://baotintuc.vn/xa-hoi/ngap-ung-va-thiet-hai-tren-202000-ha-lua-20240913095621343.htm https://daidoanket.vn/thai-nguyen-hai-nguoi-tu-vong-thiet-hai-hon-600-ty-dong-do-bao-yagi-10290104.html https://dangcongsan.vn/xay-dung-dang/thai-nguyen-cong-bo-cac-quyet-dinh-ve-cong-tac-can-bo-677747.html https://danviet.vn/62-y-bac-si-cua-binh-dinh-den-thai-nguyen-yen-bai-quyet-tam-cung-dong-bao-vuot-qua-kho-khan-20240913101402511.htm https://laodong.vn/thoi-su/chu-tich-quoc-hoi-kiem-tra-cong-tac-khac-phuc-hau-qua-mua-lu-o-thai-nguyen-1393445.ldo https://nhandan.vn/anh-chu-tich-quoc-hoi-tran-thanh-man-kiem-tra-cong-tac-khac-phuc-hau-qua-bao-so-3-tai-tinh-thai-nguyen-post830447.html https://nld.com.vn/toi-7-gio-13-9-336-nguoi-chet-va-mat-tich-hon-130-ngan-nguoi-dan-phai-di-doi-do-bao-lu-196240913101124546.htm https://phunuvietnam.vn/thai-nguyen-hoi-vien-phu-nu-chung-tay-khac-phuc-hau-qua-ngap-lut-20240912154801867.htm https://phunuvietnam.vn/thai-nguyen-trien-khai-cong-tac-phong-chong-dich-sau-thien-tai-20240912174641866.htm https://thainguyen.dcs.vn/hoat-dong-cua-cac-dang-bo/dang-bo-tp-thai-nguyen/hoi-nghi-ban-thuong-vu-thanh-uy-thai-nguyen-lan-thu-102-857.html https://thainguyen.dms.gov.vn/tin-chi-tiet/-/chi-tiet/thai-nguyen-%C4%91am-bao-nguon-hang-hoa-phuc-vu-nhan-dan-89820-1404.html https://thuonghieucongluan.com.vn/thai-nguyen-tiep-nhan-5-tan-gao-ho-tro-nhan-dan-bi-anh-huong-ngap-lut-a235642.html https://tienphong.vn/nam-thanh-nien-o-thai-nguyen-bi-lu-cuon-khi-di-bat-ca-post1672693.tpo https://tienphong.vn/ngan-hang-dau-tien-cong-bo-giam-lai-suat-cho-vay-sau-bao-so-3-post1672728.tpo https://tuoitre.vn/chu-tich-quoc-hoi-tran-thanh-man-trao-30-ti-dong-ho-tro-khac-phuc-bao-lu-tai-thai-nguyen-20240912191724375.htm https://tuoitre.vn/sau-lu-nguoi-dan-thai-nguyen-noi-chua-bao-gio-bun-ngap-nhieu-den-vay-202409121653144.htm https://vietnamnet.vn/muc-nuoc-song-cau-o-thai-nguyen-giam-dan-nguoi-dan-tat-bat-don-dep-sau-lu-2321461.html https://vtcnews.vn/trieu-nu-cuoi-huong-ve-thai-nguyen-sau-con-bao-ar895714.html """.strip() default_urls_input = """ https://vnexpress.net/sam-altman-ai-thong-minh-hon-con-nguoi-trong-vai-nghin-ngay-toi-4796649.html https://vnexpress.net/may-tram-chay-ai-gia-tram-trieu-dong-tai-viet-nam-4796490.html https://www.vngcloud.vn/blog/what-are-large-language-models https://arxiv.org/html/2408.16737v1 https://arxiv.org/html/2409.15700v1 https://arxiv.org/html/2409.09916v1 https://arxiv.org/html/2409.06903v1 https://arxiv.org/html/2409.12558v1 https://arxiv.org/html/2409.10516v2 https://rlhflow.github.io/posts/2024-05-29-multi-objective-reward-modeling https://arxiv.org/html/2405.07863v2 https://arxiv.org/html/2406.12845 https://eugeneyan.com/writing/llm-evaluators """.strip()