File size: 13,308 Bytes
c114fc1 18bcedb c114fc1 18bcedb c114fc1 d7dc7e0 18bcedb 61ffd62 60e8286 738f5e4 18bcedb c114fc1 18bcedb 91e2918 c114fc1 3eacb93 c114fc1 9b22b06 c114fc1 25414e5 c114fc1 25414e5 c114fc1 a642583 151e051 a642583 151e051 0689f85 151e051 0689f85 18bcedb d7dc7e0 18bcedb d7dc7e0 18bcedb c114fc1 18bcedb c114fc1 18bcedb d7dc7e0 18bcedb d7dc7e0 18bcedb c114fc1 18bcedb c114fc1 18bcedb c114fc1 18bcedb d7dc7e0 18bcedb d7dc7e0 18bcedb d7dc7e0 18bcedb d7dc7e0 18bcedb 151e051 18bcedb 86786c3 18bcedb c114fc1 76dd8fd 07bfeb2 c114fc1 25414e5 151e051 dafc314 35d6de6 c114fc1 18bcedb c114fc1 ee98be0 c27b83c ee98be0 c114fc1 ee98be0 d64093b 18bcedb 25414e5 18bcedb 25414e5 18bcedb d7dc7e0 18bcedb 07bfeb2 d7dc7e0 18bcedb 846b42b 18bcedb 846b42b d7dc7e0 18bcedb dc47a9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import streamlit as st
import os
import json
import pandas as pd
import random
from os.path import join
from datetime import datetime
from src import preprocess_and_load_df, load_agent, ask_agent, decorate_with_code, show_response, get_from_user, load_smart_df, ask_question
from dotenv import load_dotenv
from langchain_groq.chat_models import ChatGroq
from streamlit_feedback import streamlit_feedback
from huggingface_hub import HfApi
st.set_page_config(layout="wide")
# Load environment variables : Groq and Hugging Face API keys
load_dotenv()
Groq_Token = os.environ["GROQ_API_KEY"]
hf_token = os.environ["HF_TOKEN"]
models = {"llama3":"llama3-70b-8192","mixtral": "mixtral-8x7b-32768", "llama2": "llama2-70b-4096", "gemma": "gemma-7b-it"}
self_path = os.path.dirname(os.path.abspath(__file__))
# Using HTML and CSS to center the title
st.write(
"""
<style>
.title {
text-align: center;
color: #17becf;
}
</style>
""",
unsafe_allow_html=True,
)
# Displaying the centered title
st.markdown("<div style='text-align:center; padding: 20px;'>VayuBuddy makes pollution monitoring easier by bridging the gap between users and datasets.<br>No coding required—just meaningful insights at your fingertips!</div>", unsafe_allow_html=True)
# Center-aligned instruction text with bold formatting
st.markdown("<div style='text-align:center;'>Choose a query from <b>Select a prompt</b> or type a query in the <b>chat box</b>, select a <b>LLM</b> (Large Language Model), and press enter to generate a response.</div>", unsafe_allow_html=True)
# os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2"
# with open(join(self_path, "context1.txt")) as f:
# context = f.read().strip()
# agent = load_agent(join(self_path, "app_trial_1.csv"), context)
# df = preprocess_and_load_df(join(self_path, "Data.csv"))
# inference_server = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fmistralai%2FMistral-7B-Instruct-v0.2%26quot%3B%3C%2Fspan%3E
# inference_server = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fcodellama%2FCodeLlama-13b-hf%26quot%3B%3C%2Fspan%3E
# inference_server = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fpandasai%2Fbamboo-llm%26quot%3B%3C%2Fspan%3E
image_path = "IITGN_Logo.png"
# Display images and text in three columns with specified ratios
col1, col2, col3 = st.sidebar.columns((1.0, 2, 1.0))
with col2:
st.image(image_path, use_column_width=True)
st.markdown("<h1 class='title'>VayuBuddy</h1>", unsafe_allow_html=True)
model_name = st.sidebar.selectbox("Select LLM:", ["llama3","mixtral", "gemma"])
questions = ['Custom Prompt']
with open(join(self_path, "questions.txt")) as f:
questions += f.read().split("\n")
waiting_lines = ("Thinking...", "Just a moment...", "Let me think...", "Working on it...", "Processing...", "Hold on...", "One moment...", "On it...")
# agent = load_agent(df, context="", inference_server=inference_server, name=model_name)
# Initialize chat history
if "responses" not in st.session_state:
st.session_state.responses = []
### Old code for feedback
# def push_to_dataset(feedback, comments,output,code,error):
# # Load existing dataset or create a new one if it doesn't exist
# try:
# ds = load_dataset("YashB1/Feedbacks_eoc", split="evaluation")
# except FileNotFoundError:
# # If dataset doesn't exist, create a new one
# ds = Dataset.from_dict({"feedback": [], "comments": [], "error": [], "output": [], "code": []})
# # Add new feedback to the dataset
# new_data = {"feedback": [feedback], "comments": [comments], "error": [error], "output": [output], "code": [code]} # Convert feedback and comments to lists
# new_data = Dataset.from_dict(new_data)
# ds = concatenate_datasets([ds, new_data])
# # Push the updated dataset to Hugging Face Hub
# ds.push_to_hub("YashB1/Feedbacks_eoc", split="evaluation")
def upload_feedback():
print("Uploading feedback")
data = {
"feedback": feedback['score'],
"comment": feedback['text'], "error": error, "output": output, "prompt": last_prompt, "code": code}
# generate a random file name based on current time-stamp: YYYY-MM-DD_HH-MM-SS
random_folder_name = str(datetime.now()).replace(" ", "_").replace(":", "-").replace(".", "-")
print("Random folder:", random_folder_name)
save_path = f"/tmp/vayubuddy_feedback.md"
path_in_repo = f"data/{random_folder_name}/feedback.md"
with open(save_path, "w") as f:
template = f"""Prompt: {last_prompt}
Output: {output}
Code:
```py
{code}
```
Error: {error}
Feedback: {feedback['score']}
Comments: {feedback['text']}
"""
print(template, file=f)
api = HfApi(token=hf_token)
api.upload_file(
path_or_fileobj=save_path,
path_in_repo=path_in_repo,
repo_id="SustainabilityLabIITGN/VayuBuddy_Feedback",
repo_type="dataset",
)
if status['is_image']:
api.upload_file(
path_or_fileobj=output,
path_in_repo=f"data/{random_folder_name}/plot.png",
repo_id="SustainabilityLabIITGN/VayuBuddy_Feedback",
repo_type="dataset",
)
print("Feedback uploaded successfully!")
# Display chat responses from history on app rerun
print("#"*10)
for response_id, response in enumerate(st.session_state.responses):
status = show_response(st, response)
if response["role"] == "assistant":
feedback_key = f"feedback_{int(response_id/2)}"
print("response_id", response_id, "feedback_key", feedback_key)
error = response["error"]
output = response["content"]
last_prompt = response["last_prompt"]
code = response["gen_code"]
if "feedback" in st.session_state.responses[response_id]:
st.write("Feedback:", st.session_state.responses[response_id]["feedback"])
else:
## !!! This does on work on Safari !!!
# feedback = streamlit_feedback(feedback_type="thumbs",
# optional_text_label="[Optional] Please provide extra information", on_submit=upload_feedback, key=feedback_key)
# Display thumbs up/down buttons for feedback
thumbs = st.radio("We would appreciate your feedback!", ('👍', '👎'), index=None, key=feedback_key)
if thumbs:
# Text input for comments
comments = st.text_area("[Optional] Please provide extra information", key=feedback_key+"_comments")
feedback = {"score": thumbs, "text": comments}
if st.button("Submit", on_click=upload_feedback, key=feedback_key+"_submit"):
st.session_state.responses[response_id]["feedback"] = feedback
st.success("Feedback uploaded successfully!")
print("#"*10)
show = True
prompt = st.sidebar.selectbox("Select a Prompt:", questions, key="prompt_key")
if prompt == 'Custom Prompt':
show = False
# React to user input
prompt = st.chat_input("Ask me anything about air quality!", key=1000)
if prompt :
show = True
else:
# placeholder for chat input
st.chat_input("Select 'Select a Prompt' -> 'Custom Prompt' in the sidebar to ask your own questions.", key=1000, disabled=True)
if "last_prompt" in st.session_state:
last_prompt = st.session_state["last_prompt"]
last_model_name = st.session_state["last_model_name"]
if (prompt == last_prompt) and (model_name == last_model_name):
show = False
if prompt:
st.sidebar.info("Select 'Custom Prompt' to ask your own questions.")
if show:
# Add user input to chat history
user_response = get_from_user(prompt)
st.session_state.responses.append(user_response)
# select random waiting line
with st.spinner(random.choice(waiting_lines)):
ran = False
for i in range(1):
print(f"Attempt {i+1}")
llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0)
df_check = pd.read_csv("Data.csv")
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
df_check = df_check.head(5)
new_line = "\n"
parameters = {"font.size": 12,"figure.dpi": 600}
template = f"""```python
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams.update({parameters})
df = pd.read_csv("Data.csv")
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
import geopandas as gpd
india = gpd.read_file("https://gist.githubusercontent.com/jbrobst/56c13bbbf9d97d187fea01ca62ea5112/raw/e388c4cae20aa53cb5090210a42ebb9b765c0a36/india_states.geojson")
india.loc[india['ST_NM'].isin(['Ladakh', 'Jammu & Kashmir']), 'ST_NM'] = 'Jammu and Kashmir'
import uuid
# df.dtypes
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}
# {prompt.strip()}
# <your code here>
```
"""
query = f"""I have a pandas dataframe data of PM2.5 and PM10.
* The columns are 'Timestamp', 'station', 'PM2.5', 'PM10', 'address', 'city', 'latitude', 'longitude',and 'state'.
* Frequency of data is daily.
* `pollution` generally means `PM2.5`.
* You already have df, so don't read the csv file
* Don't print anything, but save result in a variable `answer` and make it global.
* Unless explicitly mentioned, don't consider the result as a plot.
* PM2.5 guidelines: India: 60, WHO: 15.
* PM10 guidelines: India: 100, WHO: 50.
* If result is a plot, show the India and WHO guidelines in the plot.
* If result is a plot make it in tight layout, save it and save path in `answer`. Example: `answer='plot.png'`. Use uuid to save the plot.
* If result is a plot, rotate x-axis tick labels by 45 degrees,
* If result is not a plot, save it as a string in `answer`. Example: `answer='The city is Mumbai'`
* I have a geopandas.geodataframe india containining the coordinates required to plot Indian Map with states.
* If the query asks you to plot on India Map, use that geodataframe to plot and then add more points as per the requirements using the similar code as follows : v = ax.scatter(df['longitude'], df['latitude']). If the colorbar is required, use the following code : plt.colorbar(v)
* If the query asks you to plot on India Map plot the India Map in Beige color
* Whenever you do any sort of aggregation, report the corresponding standard deviation, standard error and the number of data points for that aggregation.
* Whenever you're reporting a floating point number, round it to 2 decimal places.
* Always report the unit of the data. Example: `The average PM2.5 is 45.67 µg/m³`
Complete the following code.
{template}
"""
answer = None
code = None
error = None
try:
answer = llm.invoke(query)
code = f"""
{template.split("```python")[1].split("```")[0]}
{answer.content.split("```python")[1].split("```")[0]}
"""
# update variable `answer` when code is executed
exec(code)
ran = True
except Exception as e:
error = e
if code is not None:
answer = f"!!!Faced an error while working on your query. Please try again!!!"
if type(answer) != str:
answer = f"!!!Faced an error while working on your query. Please try again!!!"
response = {"role": "assistant", "content": answer, "gen_code": code, "ex_code": code, "last_prompt": prompt, "error": error}
# Get response from agent
# response = ask_question(model_name=model_name, question=prompt)
# response = ask_agent(agent, prompt)
if ran:
break
# Append agent response to chat history
st.session_state.responses.append(response)
st.session_state['last_prompt'] = prompt
st.session_state['last_model_name'] = model_name
st.rerun()
# contact details
contact_details = """
**Feel free to reach out to us:**
- [Yash J Bachwana](mailto:[email protected])
(Lead Developer, IIT Gandhinagar)
- [Zeel B Patel](https://patel-zeel.github.io/)
(PhD Student, IIT Gandhinagar)
- [Nipun Batra](https://nipunbatra.github.io/)
(Faculty, IIT Gandhinagar)
"""
# Display contact details with message
st.sidebar.markdown("<hr>", unsafe_allow_html=True)
st.sidebar.markdown(contact_details, unsafe_allow_html=True)
st.markdown(
"""
<style>
.sidebar .sidebar-content {
position: sticky;
top: 0;
height: 100vh;
overflow-y: auto;
overflow-x: hidden;
}
</style>
""",
unsafe_allow_html=True
) |