File size: 8,760 Bytes
9f0d781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dc3962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f0d781
 
 
3dc3962
 
 
9f0d781
 
3dc3962
9f0d781
 
 
 
 
 
 
 
 
 
 
 
 
3dc3962
9f0d781
 
3dc3962
 
9f0d781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e68989
9f0d781
 
 
 
 
 
 
 
 
 
 
 
3dc3962
 
 
 
 
 
9a81b8f
3dc3962
 
 
 
 
9a81b8f
3dc3962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f0d781
 
3dc3962
9f0d781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e68989
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import gradio as gr
import pandas as pd
import json
from constants import BANNER, INTRODUCTION_TEXT, CITATION_TEXT, METRICS_TAB_TEXT, DIR_OUTPUT_REQUESTS, LEADERBOARD_CSS
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message
from datetime import datetime, timezone

LAST_UPDATED = "Nov 22th 2024"

column_names = {
    "MODEL": "Model",
    "Avg. WER": "Average WER ⬇️",    
    "RTFx": "RTFx ⬆️️",
    "AMI WER": "AMI",
    "Earnings22 WER": "Earnings22",
    "Gigaspeech WER": "Gigaspeech",
    "LS Clean WER": "LS Clean",
    "LS Other WER": "LS Other",
    "SPGISpeech WER": "SPGISpeech",
    "Tedlium WER": "Tedlium",
    "Voxpopuli WER": "Voxpopuli",
}

whisper_column_names = {
    "MODEL": "Model",
    "Avg. WER": "Average WER ⬇️",    
    "RTFx": "RTFx ⬆️️",
    "Backend": "Backend",
    "Hardware": "Device",
    "AMI WER": "AMI",
    "Earnings22 WER": "Earnings22",
    "Gigaspeech WER": "Gigaspeech",
    "LS Clean WER": "LS Clean",
    "LS Other WER": "LS Other",
    "SPGISpeech WER": "SPGISpeech",
    "Tedlium WER": "Tedlium",
    "Voxpopuli WER": "Voxpopuli",
}

eval_queue_repo, requested_models, csv_results, whisper_eval_queue_repo, whisper_csv_results = load_all_info_from_dataset_hub()

if not csv_results.exists():
    raise Exception(f"CSV file {csv_results} does not exist locally")
if not whisper_csv_results.exists():
    raise Exception(f"CSV file {whisper_csv_results} does not exist locally")

# Get csv with data and parse columns
original_df = pd.read_csv(csv_results)
whisper_df = pd.read_csv(whisper_csv_results)
# Formats the columns
def formatter(x):
    if type(x) is str:
        x = x
    else: 
        x = round(x, 2)
    return x

for col in original_df.columns:
    if col == "model":
        original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
    else:
        original_df[col] = original_df[col].apply(formatter) # For numerical values
        whisper_df[col] = whisper_df[col].apply(formatter) # For numerical values
original_df.rename(columns=column_names, inplace=True)
original_df.sort_values(by='Average WER ⬇️', inplace=True)
whisper_df.rename(columns=whisper_column_names, inplace=True)
whisper_df.sort_values(by='Average WER ⬇️', inplace=True)

COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]


def request_model(model_text, chbcoco2017):
    
    # Determine the selected checkboxes
    dataset_selection = []
    if chbcoco2017:
        dataset_selection.append("ESB Datasets tests only")

    if len(dataset_selection) == 0:
        return styled_error("You need to select at least one dataset")
        
    base_model_on_hub, error_msg = is_model_on_hub(model_text)

    if not base_model_on_hub:
        return styled_error(f"Base model '{model_text}' {error_msg}")
    
    # Construct the output dictionary
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
    required_datasets = ', '.join(dataset_selection)
    eval_entry = {
        "date": current_time,
        "model": model_text,
        "datasets_selected": required_datasets
    }
    
    # Prepare file path 
    DIR_OUTPUT_REQUESTS.mkdir(parents=True, exist_ok=True)
    
    fn_datasets = '@ '.join(dataset_selection)
    filename = model_text.replace("/","@") + "@@" + fn_datasets 
    if filename in requested_models:
        return styled_error(f"A request for this model '{model_text}' and dataset(s) was already made.")
    try:
        filename_ext = filename + ".txt"
        out_filepath = DIR_OUTPUT_REQUESTS / filename_ext

        # Write the results to a text file
        with open(out_filepath, "w") as f:
            f.write(json.dumps(eval_entry))
            
        upload_file(filename, out_filepath)
        
        # Include file in the list of uploaded files
        requested_models.append(filename)
        
        # Remove the local file
        out_filepath.unlink()

        return styled_message("πŸ€— Your request has been submitted and will be evaluated soon!</p>")
    except Exception as e:
        return styled_error(f"Error submitting request!")

with gr.Blocks(css=LEADERBOARD_CSS) as demo:
    gr.HTML(BANNER, elem_id="banner")
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Leaderboard", elem_id="od-benchmark-tab-table", id=0):
            leaderboard_table = gr.components.Dataframe(
                value=original_df,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
                )
        with gr.TabItem("πŸ”„ Whisper Model Leaderboard", elem_id="whisper-backends-tab", id=1):
            gr.Markdown("## Whisper Model Performance Across Different Backends", elem_classes="markdown-text")
            gr.Markdown("This table shows how different Whisper model implementations compare in terms of performance and speed.", elem_classes="markdown-text")
            
            with gr.Row():
                backend_filter = gr.Dropdown(
                    choices=["All"] + sorted(whisper_df["Backend"].unique().tolist()),
                    value="All",
                    label="Filter by Backend",
                    elem_id="backend-filter",
                    multiselect=True  # Enable multiple selection
                )   
                device_choices = ["All"] + sorted(whisper_df["Device"].unique().tolist()) if "Device" in whisper_df.columns else ["All"]
                device_filter = gr.Dropdown(
                    choices=device_choices,
                    value="All",
                    label="Filter by Device",
                    elem_id="device-filter",
                    multiselect=True  # Enable multiple selection
                )
            
            whisper_table = gr.components.Dataframe(
                value=whisper_df,
                datatype=TYPES,
                elem_id="whisper-table",
                interactive=False,
                visible=True,
            )

            def filter_whisper_table(backends, devices):
                filtered_df = whisper_df.copy()
                
                # Handle backend filtering
                if backends and "All" not in backends:
                    filtered_df = filtered_df[filtered_df["Backend"].isin(backends)]
                
                # Handle device filtering
                if devices and "All" not in devices and "Device" in filtered_df.columns:
                    filtered_df = filtered_df[filtered_df["Device"].isin(devices)]
                    
                return filtered_df

            backend_filter.change(
                filter_whisper_table,
                inputs=[backend_filter, device_filter],
                outputs=whisper_table
            )
            device_filter.change(
                filter_whisper_table,
                inputs=[backend_filter, device_filter],
                outputs=whisper_table
            )
        with gr.TabItem("πŸ“ˆ Metrics", elem_id="od-benchmark-tab-table", id=2):
            gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text")

        with gr.TabItem("βœ‰οΈβœ¨ Request a model here!", elem_id="od-benchmark-tab-table", id=3):
            with gr.Column():
                gr.Markdown("# βœ‰οΈβœ¨ Request results for a new model here!", elem_classes="markdown-text")
            with gr.Column():
                gr.Markdown("Select a dataset:", elem_classes="markdown-text")
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)")
                    chb_coco2017 = gr.Checkbox(label="COCO validation 2017 dataset", visible=False, value=True, interactive=False)
                with gr.Column():
                    mdw_submission_result = gr.Markdown()
                    btn_submitt = gr.Button(value="πŸš€ Request")
                    btn_submitt.click(request_model, 
                                      [model_name_textbox, chb_coco2017], 
                                      mdw_submission_result)

    gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text")
    
    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            gr.Textbox(
                value=CITATION_TEXT, lines=7,
                label="Copy the BibTeX snippet to cite this source",
                elem_id="citation-button",
                show_copy_button=True,
            )

demo.launch(ssr_mode=False)