import json import os import gzip import gradio as gr import requests import pandas as pd from typing import Tuple client_session = requests.Session() client_session.keep_alive = 5 def search_stories(query: str, page: int) -> Tuple[pd.DataFrame, int]: """ Search stories from local API and return results as DataFrame """ try: response = client_session.post( url=os.environ.get("API_URL", "http://50.18.255.74:8600/search"), json={"query": query, "page": page}, headers={ "Content-Type": "application/json", "Accept-Encoding": "gzip", }, ) response.raise_for_status() data = response.content data = json.loads(data)["hits"] # Convert response data to DataFrame df = pd.DataFrame(data) # Reorder columns for better display columns = ["title", "author", "story_text", "created_at", "points"] df = df[columns] return df, page except requests.RequestException as e: print(e) return pd.DataFrame(), page def next_page(query: str, current_page: int) -> Tuple[pd.DataFrame, int]: """ Load next page of results """ next_page = current_page + 1 return search_stories(query, next_page) # Create Gradio interface with gr.Blocks() as app: gr.Markdown("# Story Search") # Input components with gr.Row(): query_input = gr.Textbox( label="Search Query", placeholder="Enter search terms..." ) page_state = gr.State(value=0) # Search button search_btn = gr.Button("Search") # Results display results_df = gr.DataFrame(label="Search Results", interactive=False, wrap=True) # Next page button next_btn = gr.Button("Next Page") # Handle search button click search_btn.click( fn=search_stories, inputs=[query_input, page_state], outputs=[results_df, page_state], ) # Handle next page button click next_btn.click( fn=next_page, inputs=[query_input, page_state], outputs=[results_df, page_state] ) if __name__ == "__main__": app.launch()