File size: 2,422 Bytes
88ef79d
dc7109c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88ef79d
dc7109c
 
 
 
 
 
 
 
 
 
 
 
88ef79d
dc7109c
 
 
 
88ef79d
 
 
 
319deed
88ef79d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from diffusers import DiffusionPipeline
import torch

# Load the models and tokenizers
translation_model_name = "google/madlad400-3b-mt"
translation_model = AutoModelForSeq2SeqLM.from_pretrained(translation_model_name)
translation_tokenizer = AutoTokenizer.from_pretrained(translation_model_name)

transcription_model = "chrisjay/fonxlsr"

diffusion_model_name = "stabilityai/stable-diffusion-xl-base-1.0"
diffusion_pipeline = DiffusionPipeline.from_pretrained(diffusion_model_name, torch_dtype=torch.float16)
diffusion_pipeline = diffusion_pipeline.to("cuda")

# Define the translation and transcription pipeline
translation_pipeline = pipeline("translation", model=translation_model, tokenizer=translation_tokenizer, device_map="auto")
transcription_pipeline = pipeline("automatic-speech-recognition", model=transcription_model, device_map="auto")

# Define the function for transcribing and translating audio in Fon
def transcribe_and_translate_audio_fon(audio_path, num_images=1):
    # Transcribe the audio to Fon using the transcription pipeline
    transcription_fon = transcription_pipeline(audio_path)["text"]

    # Translate the Fon transcription to French using the translation pipeline
    translation_result = translation_pipeline(transcription_fon, source_lang="fon", target_lang="fr")
    translation_fr = translation_result[0]["translation_text"]

    # Generate images based on the French translation using the diffusion model
    images = diffusion_pipeline(translation_fr, num_images_per_prompt=num_images)["images"]

    return images

# Create a Gradio interface
def process_audio(audio, num_images):
    images = transcribe_and_translate_audio_fon(audio, num_images)
    return images

# Define Gradio interface components
audio_input = gr.Audio(source="upload", type="filepath", label="Upload an audio file")
image_output = gr.Gallery(label="Generated Images").style(grid=2)
num_images_input = gr.Slider(minimum=1, maximum=5, step=1, value=1, label="Number of Images")

# Launch Gradio interface
interface = gr.Interface(
    fn=process_audio,
    inputs=[audio_input, num_images_input],
    outputs=image_output,
    title="Fon Audio to Image Translation",
    description="Upload an audio file in Fon, and the app will transcribe, translate to French, and generate related images."
)

interface.launch()