add experimental tab
Browse files- app.py +4 -0
- app_experimental.py +162 -88
app.py
CHANGED
@@ -16,8 +16,11 @@ from app_together import demo as demo_together
|
|
16 |
from app_xai import demo as demo_grok
|
17 |
from app_flux import demo as demo_flux
|
18 |
from app_ltx_video import demo as demo_ltx_video
|
|
|
19 |
|
20 |
with gr.Blocks(fill_height=True) as demo:
|
|
|
|
|
21 |
with gr.Tab("Meta Llama"):
|
22 |
demo_sambanova.render()
|
23 |
gr.Markdown(
|
@@ -60,6 +63,7 @@ with gr.Blocks(fill_height=True) as demo:
|
|
60 |
demo_nvidia.render()
|
61 |
with gr.Tab("Flux"):
|
62 |
demo_flux.render()
|
|
|
63 |
|
64 |
|
65 |
if __name__ == "__main__":
|
|
|
16 |
from app_xai import demo as demo_grok
|
17 |
from app_flux import demo as demo_flux
|
18 |
from app_ltx_video import demo as demo_ltx_video
|
19 |
+
from app_experimental import demo as demo_experimental
|
20 |
|
21 |
with gr.Blocks(fill_height=True) as demo:
|
22 |
+
with gr.Tab("Experimental"):
|
23 |
+
demo_experimental.render()
|
24 |
with gr.Tab("Meta Llama"):
|
25 |
demo_sambanova.render()
|
26 |
gr.Markdown(
|
|
|
63 |
demo_nvidia.render()
|
64 |
with gr.Tab("Flux"):
|
65 |
demo_flux.render()
|
66 |
+
|
67 |
|
68 |
|
69 |
if __name__ == "__main__":
|
app_experimental.py
CHANGED
@@ -1,48 +1,31 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
from typing import List, Dict
|
4 |
import random
|
5 |
-
import
|
6 |
-
from
|
7 |
-
|
8 |
-
|
9 |
-
import anthropic_gradio
|
10 |
-
import cerebras_gradio
|
11 |
-
import dashscope_gradio
|
12 |
-
import fireworks_gradio
|
13 |
-
import gemini_gradio
|
14 |
-
import groq_gradio
|
15 |
-
import hyperbolic_gradio
|
16 |
-
import mistral_gradio
|
17 |
-
import nvidia_gradio
|
18 |
-
import openai_gradio
|
19 |
-
import perplexity_gradio
|
20 |
-
import sambanova_gradio
|
21 |
-
import together_gradio
|
22 |
-
import xai_gradio
|
23 |
-
|
24 |
-
# Define MODEL_REGISTRIES dictionary
|
25 |
-
MODEL_REGISTRIES = {
|
26 |
-
"OpenAI": (openai_gradio.registry, os.getenv("OPENAI_API_KEY")),
|
27 |
-
"Anthropic": (anthropic_gradio.registry, os.getenv("ANTHROPIC_API_KEY")),
|
28 |
-
"Cerebras": (cerebras_gradio, os.getenv("CEREBRAS_API_KEY")),
|
29 |
-
"DashScope": (dashscope_gradio, os.getenv("DASHSCOPE_API_KEY")),
|
30 |
-
"Fireworks": (fireworks_gradio, os.getenv("FIREWORKS_API_KEY")),
|
31 |
-
"Gemini": (gemini_gradio, os.getenv("GEMINI_API_KEY")),
|
32 |
-
"Groq": (groq_gradio, os.getenv("GROQ_API_KEY")),
|
33 |
-
"Hyperbolic": (hyperbolic_gradio, os.getenv("HYPERBOLIC_API_KEY")),
|
34 |
-
"Mistral": (mistral_gradio, os.getenv("MISTRAL_API_KEY")),
|
35 |
-
"NVIDIA": (nvidia_gradio, os.getenv("NVIDIA_API_KEY")),
|
36 |
-
"SambaNova": (sambanova_gradio, os.getenv("SAMBANOVA_API_KEY")),
|
37 |
-
"Together": (together_gradio, os.getenv("TOGETHER_API_KEY")),
|
38 |
-
"XAI": (xai_gradio, os.getenv("XAI_API_KEY")),
|
39 |
-
}
|
40 |
|
41 |
def get_all_models():
|
42 |
"""Get all available models from the registries."""
|
43 |
return [
|
44 |
-
"
|
45 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
]
|
47 |
|
48 |
def generate_discussion_prompt(original_question: str, previous_responses: List[str]) -> str:
|
@@ -85,17 +68,66 @@ def chat_with_openai(model: str, messages: List[Dict], api_key: str) -> str:
|
|
85 |
)
|
86 |
return response.choices[0].message.content
|
87 |
|
88 |
-
def chat_with_anthropic(
|
89 |
-
|
90 |
client = Anthropic(api_key=api_key)
|
91 |
-
# Convert messages to Anthropic format
|
92 |
-
prompt = "\n\n".join([f"{m['role']}: {m['content']}" for m in messages])
|
93 |
response = client.messages.create(
|
94 |
-
model=
|
95 |
-
messages=
|
|
|
96 |
)
|
97 |
return response.content[0].text
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
def multi_model_consensus(
|
100 |
question: str,
|
101 |
selected_models: List[str],
|
@@ -113,31 +145,34 @@ def multi_model_consensus(
|
|
113 |
initial_responses = []
|
114 |
for i, model in enumerate(selected_models):
|
115 |
provider, model_name = model.split(": ", 1)
|
116 |
-
registry_fn, api_key = MODEL_REGISTRIES[provider]
|
117 |
|
118 |
-
if not api_key:
|
119 |
-
continue
|
120 |
-
|
121 |
try:
|
122 |
-
# Load the model using the registry function
|
123 |
-
predictor = gr.load(
|
124 |
-
name=model_name,
|
125 |
-
src=registry_fn,
|
126 |
-
token=api_key
|
127 |
-
)
|
128 |
-
|
129 |
-
# Format the request based on the provider
|
130 |
if provider == "Anthropic":
|
131 |
-
|
|
|
132 |
messages=[{"role": "user", "content": question}],
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
)
|
137 |
-
else:
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
141 |
)
|
142 |
|
143 |
initial_responses.append(f"{model}: {response}")
|
@@ -154,38 +189,77 @@ def multi_model_consensus(
|
|
154 |
random.shuffle(selected_models) # Randomize order each round
|
155 |
for model in selected_models:
|
156 |
provider, model_name = model.split(": ", 1)
|
157 |
-
registry, api_key = MODEL_REGISTRIES[provider]
|
158 |
|
159 |
-
if not api_key:
|
160 |
-
continue
|
161 |
-
|
162 |
try:
|
163 |
discussion_prompt = generate_discussion_prompt(question, discussion_history)
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
round_responses.append(f"{model}: {response}")
|
170 |
discussion_history.append(f"Round {round_num + 1} - {model}:\n{response}")
|
171 |
chat_history.append((f"Round {round_num + 1} - {model}", response))
|
172 |
except Exception as e:
|
173 |
chat_history.append((f"Error from {model} in round {round_num + 1}", str(e)))
|
174 |
|
175 |
-
# Final consensus
|
176 |
progress(0.9, desc="Building final consensus...")
|
177 |
-
# Use the first model for final consensus instead of two models
|
178 |
model = selected_models[0]
|
179 |
provider, model_name = model.split(": ", 1)
|
180 |
-
registry, api_key = MODEL_REGISTRIES[provider]
|
181 |
|
182 |
try:
|
183 |
consensus_prompt = generate_consensus_prompt(question, discussion_history)
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
except Exception as e:
|
190 |
final_consensus = f"Error getting consensus from {model}: {str(e)}"
|
191 |
|
@@ -198,22 +272,22 @@ with gr.Blocks() as demo:
|
|
198 |
gr.Markdown("# Experimental Multi-Model Consensus Chat")
|
199 |
gr.Markdown("""Select multiple models to collaborate on answering your question.
|
200 |
The models will discuss with each other and attempt to reach a consensus.
|
201 |
-
Maximum
|
202 |
|
203 |
with gr.Row():
|
204 |
with gr.Column():
|
205 |
model_selector = gr.Dropdown(
|
206 |
choices=get_all_models(),
|
207 |
multiselect=True,
|
208 |
-
label="Select Models (max
|
209 |
-
info="Choose up to
|
210 |
-
value=["
|
211 |
-
max_choices=
|
212 |
)
|
213 |
rounds_slider = gr.Slider(
|
214 |
minimum=1,
|
215 |
-
maximum=
|
216 |
-
value=
|
217 |
step=1,
|
218 |
label="Discussion Rounds",
|
219 |
info="Number of rounds of discussion between models"
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
from typing import List, Dict, Callable
|
4 |
import random
|
5 |
+
import google.generativeai as genai
|
6 |
+
from anthropic import Anthropic
|
7 |
+
import openai
|
8 |
+
from openai import OpenAI # Add explicit OpenAI import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def get_all_models():
|
11 |
"""Get all available models from the registries."""
|
12 |
return [
|
13 |
+
"SambaNova: Meta-Llama-3.2-1B-Instruct",
|
14 |
+
"SambaNova: Meta-Llama-3.2-3B-Instruct",
|
15 |
+
"SambaNova: Llama-3.2-11B-Vision-Instruct",
|
16 |
+
"SambaNova: Llama-3.2-90B-Vision-Instruct",
|
17 |
+
"SambaNova: Meta-Llama-3.1-8B-Instruct",
|
18 |
+
"SambaNova: Meta-Llama-3.1-70B-Instruct",
|
19 |
+
"SambaNova: Meta-Llama-3.1-405B-Instruct",
|
20 |
+
"Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct",
|
21 |
+
"Hyperbolic: meta-llama/Llama-3.2-3B-Instruct",
|
22 |
+
"Hyperbolic: meta-llama/Meta-Llama-3.1-8B-Instruct",
|
23 |
+
"Hyperbolic: meta-llama/Meta-Llama-3.1-70B-Instruct",
|
24 |
+
"Hyperbolic: meta-llama/Meta-Llama-3-70B-Instruct",
|
25 |
+
"Hyperbolic: NousResearch/Hermes-3-Llama-3.1-70B",
|
26 |
+
"Hyperbolic: Qwen/Qwen2.5-72B-Instruct",
|
27 |
+
"Hyperbolic: deepseek-ai/DeepSeek-V2.5",
|
28 |
+
"Hyperbolic: meta-llama/Meta-Llama-3.1-405B-Instruct",
|
29 |
]
|
30 |
|
31 |
def generate_discussion_prompt(original_question: str, previous_responses: List[str]) -> str:
|
|
|
68 |
)
|
69 |
return response.choices[0].message.content
|
70 |
|
71 |
+
def chat_with_anthropic(messages: List[Dict], api_key: str) -> str:
|
72 |
+
"""Chat with Anthropic's Claude model."""
|
73 |
client = Anthropic(api_key=api_key)
|
|
|
|
|
74 |
response = client.messages.create(
|
75 |
+
model="claude-3-sonnet-20240229",
|
76 |
+
messages=messages,
|
77 |
+
max_tokens=1024
|
78 |
)
|
79 |
return response.content[0].text
|
80 |
|
81 |
+
def chat_with_gemini(messages: List[Dict], api_key: str) -> str:
|
82 |
+
"""Chat with Gemini Pro model."""
|
83 |
+
genai.configure(api_key=api_key)
|
84 |
+
model = genai.GenerativeModel('gemini-pro')
|
85 |
+
|
86 |
+
# Convert messages to Gemini format
|
87 |
+
gemini_messages = []
|
88 |
+
for msg in messages:
|
89 |
+
role = "user" if msg["role"] == "user" else "model"
|
90 |
+
gemini_messages.append({"role": role, "parts": [msg["content"]]})
|
91 |
+
|
92 |
+
response = model.generate_content([m["parts"][0] for m in gemini_messages])
|
93 |
+
return response.text
|
94 |
+
|
95 |
+
def chat_with_sambanova(messages: List[Dict], api_key: str, model_name: str = "Llama-3.2-90B-Vision-Instruct") -> str:
|
96 |
+
"""Chat with SambaNova's models using their OpenAI-compatible API."""
|
97 |
+
client = openai.OpenAI(
|
98 |
+
api_key=api_key,
|
99 |
+
base_url="https://api.sambanova.ai/v1",
|
100 |
+
)
|
101 |
+
|
102 |
+
response = client.chat.completions.create(
|
103 |
+
model=model_name, # Use the specific model name passed in
|
104 |
+
messages=messages,
|
105 |
+
temperature=0.1,
|
106 |
+
top_p=0.1
|
107 |
+
)
|
108 |
+
return response.choices[0].message.content
|
109 |
+
|
110 |
+
def chat_with_hyperbolic(messages: List[Dict], api_key: str, model_name: str = "Qwen/Qwen2.5-Coder-32B-Instruct") -> str:
|
111 |
+
"""Chat with Hyperbolic's models using their OpenAI-compatible API."""
|
112 |
+
client = OpenAI(
|
113 |
+
api_key=api_key,
|
114 |
+
base_url="https://api.hyperbolic.xyz/v1"
|
115 |
+
)
|
116 |
+
|
117 |
+
# Add system message to the start of the messages list
|
118 |
+
full_messages = [
|
119 |
+
{"role": "system", "content": "You are a helpful assistant. Be descriptive and clear."},
|
120 |
+
*messages
|
121 |
+
]
|
122 |
+
|
123 |
+
response = client.chat.completions.create(
|
124 |
+
model=model_name, # Use the specific model name passed in
|
125 |
+
messages=full_messages,
|
126 |
+
temperature=0.7,
|
127 |
+
max_tokens=1024,
|
128 |
+
)
|
129 |
+
return response.choices[0].message.content
|
130 |
+
|
131 |
def multi_model_consensus(
|
132 |
question: str,
|
133 |
selected_models: List[str],
|
|
|
145 |
initial_responses = []
|
146 |
for i, model in enumerate(selected_models):
|
147 |
provider, model_name = model.split(": ", 1)
|
|
|
148 |
|
|
|
|
|
|
|
149 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
if provider == "Anthropic":
|
151 |
+
api_key = os.getenv("ANTHROPIC_API_KEY")
|
152 |
+
response = chat_with_anthropic(
|
153 |
messages=[{"role": "user", "content": question}],
|
154 |
+
api_key=api_key
|
155 |
+
)
|
156 |
+
elif provider == "SambaNova":
|
157 |
+
api_key = os.getenv("SAMBANOVA_API_KEY")
|
158 |
+
response = chat_with_sambanova(
|
159 |
+
messages=[
|
160 |
+
{"role": "system", "content": "You are a helpful assistant"},
|
161 |
+
{"role": "user", "content": question}
|
162 |
+
],
|
163 |
+
api_key=api_key
|
164 |
+
)
|
165 |
+
elif provider == "Hyperbolic": # Add Hyperbolic case
|
166 |
+
api_key = os.getenv("HYPERBOLIC_API_KEY")
|
167 |
+
response = chat_with_hyperbolic(
|
168 |
+
messages=[{"role": "user", "content": question}],
|
169 |
+
api_key=api_key
|
170 |
)
|
171 |
+
else: # Gemini
|
172 |
+
api_key = os.getenv("GEMINI_API_KEY")
|
173 |
+
response = chat_with_gemini(
|
174 |
+
messages=[{"role": "user", "content": question}],
|
175 |
+
api_key=api_key
|
176 |
)
|
177 |
|
178 |
initial_responses.append(f"{model}: {response}")
|
|
|
189 |
random.shuffle(selected_models) # Randomize order each round
|
190 |
for model in selected_models:
|
191 |
provider, model_name = model.split(": ", 1)
|
|
|
192 |
|
|
|
|
|
|
|
193 |
try:
|
194 |
discussion_prompt = generate_discussion_prompt(question, discussion_history)
|
195 |
+
if provider == "Anthropic":
|
196 |
+
api_key = os.getenv("ANTHROPIC_API_KEY")
|
197 |
+
response = chat_with_anthropic(
|
198 |
+
messages=[{"role": "user", "content": discussion_prompt}],
|
199 |
+
api_key=api_key
|
200 |
+
)
|
201 |
+
elif provider == "SambaNova":
|
202 |
+
api_key = os.getenv("SAMBANOVA_API_KEY")
|
203 |
+
response = chat_with_sambanova(
|
204 |
+
messages=[
|
205 |
+
{"role": "system", "content": "You are a helpful assistant"},
|
206 |
+
{"role": "user", "content": discussion_prompt}
|
207 |
+
],
|
208 |
+
api_key=api_key
|
209 |
+
)
|
210 |
+
elif provider == "Hyperbolic": # Add Hyperbolic case
|
211 |
+
api_key = os.getenv("HYPERBOLIC_API_KEY")
|
212 |
+
response = chat_with_hyperbolic(
|
213 |
+
messages=[{"role": "user", "content": discussion_prompt}],
|
214 |
+
api_key=api_key
|
215 |
+
)
|
216 |
+
else: # Gemini
|
217 |
+
api_key = os.getenv("GEMINI_API_KEY")
|
218 |
+
response = chat_with_gemini(
|
219 |
+
messages=[{"role": "user", "content": discussion_prompt}],
|
220 |
+
api_key=api_key
|
221 |
+
)
|
222 |
+
|
223 |
round_responses.append(f"{model}: {response}")
|
224 |
discussion_history.append(f"Round {round_num + 1} - {model}:\n{response}")
|
225 |
chat_history.append((f"Round {round_num + 1} - {model}", response))
|
226 |
except Exception as e:
|
227 |
chat_history.append((f"Error from {model} in round {round_num + 1}", str(e)))
|
228 |
|
229 |
+
# Final consensus
|
230 |
progress(0.9, desc="Building final consensus...")
|
|
|
231 |
model = selected_models[0]
|
232 |
provider, model_name = model.split(": ", 1)
|
|
|
233 |
|
234 |
try:
|
235 |
consensus_prompt = generate_consensus_prompt(question, discussion_history)
|
236 |
+
if provider == "Anthropic":
|
237 |
+
api_key = os.getenv("ANTHROPIC_API_KEY")
|
238 |
+
final_consensus = chat_with_anthropic(
|
239 |
+
messages=[{"role": "user", "content": consensus_prompt}],
|
240 |
+
api_key=api_key
|
241 |
+
)
|
242 |
+
elif provider == "SambaNova":
|
243 |
+
api_key = os.getenv("SAMBANOVA_API_KEY")
|
244 |
+
final_consensus = chat_with_sambanova(
|
245 |
+
messages=[
|
246 |
+
{"role": "system", "content": "You are a helpful assistant"},
|
247 |
+
{"role": "user", "content": consensus_prompt}
|
248 |
+
],
|
249 |
+
api_key=api_key
|
250 |
+
)
|
251 |
+
elif provider == "Hyperbolic": # Add Hyperbolic case
|
252 |
+
api_key = os.getenv("HYPERBOLIC_API_KEY")
|
253 |
+
final_consensus = chat_with_hyperbolic(
|
254 |
+
messages=[{"role": "user", "content": consensus_prompt}],
|
255 |
+
api_key=api_key
|
256 |
+
)
|
257 |
+
else: # Gemini
|
258 |
+
api_key = os.getenv("GEMINI_API_KEY")
|
259 |
+
final_consensus = chat_with_gemini(
|
260 |
+
messages=[{"role": "user", "content": consensus_prompt}],
|
261 |
+
api_key=api_key
|
262 |
+
)
|
263 |
except Exception as e:
|
264 |
final_consensus = f"Error getting consensus from {model}: {str(e)}"
|
265 |
|
|
|
272 |
gr.Markdown("# Experimental Multi-Model Consensus Chat")
|
273 |
gr.Markdown("""Select multiple models to collaborate on answering your question.
|
274 |
The models will discuss with each other and attempt to reach a consensus.
|
275 |
+
Maximum 3 models can be selected at once.""")
|
276 |
|
277 |
with gr.Row():
|
278 |
with gr.Column():
|
279 |
model_selector = gr.Dropdown(
|
280 |
choices=get_all_models(),
|
281 |
multiselect=True,
|
282 |
+
label="Select Models (max 3)",
|
283 |
+
info="Choose up to 3 models to participate in the discussion",
|
284 |
+
value=["SambaNova: Llama-3.2-90B-Vision-Instruct", "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct"],
|
285 |
+
max_choices=3
|
286 |
)
|
287 |
rounds_slider = gr.Slider(
|
288 |
minimum=1,
|
289 |
+
maximum=2,
|
290 |
+
value=1,
|
291 |
step=1,
|
292 |
label="Discussion Rounds",
|
293 |
info="Number of rounds of discussion between models"
|