|
import os |
|
import random |
|
|
|
import google.generativeai as genai |
|
import gradio as gr |
|
import openai |
|
from anthropic import Anthropic |
|
from openai import OpenAI |
|
|
|
|
|
def get_all_models(): |
|
"""Get all available models from the registries.""" |
|
return [ |
|
"SambaNova: Meta-Llama-3.2-1B-Instruct", |
|
"SambaNova: Meta-Llama-3.2-3B-Instruct", |
|
"SambaNova: Llama-3.2-11B-Vision-Instruct", |
|
"SambaNova: Llama-3.2-90B-Vision-Instruct", |
|
"SambaNova: Meta-Llama-3.1-8B-Instruct", |
|
"SambaNova: Meta-Llama-3.1-70B-Instruct", |
|
"SambaNova: Meta-Llama-3.1-405B-Instruct", |
|
"Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct", |
|
"Hyperbolic: meta-llama/Llama-3.2-3B-Instruct", |
|
"Hyperbolic: meta-llama/Meta-Llama-3.1-8B-Instruct", |
|
"Hyperbolic: meta-llama/Meta-Llama-3.1-70B-Instruct", |
|
"Hyperbolic: meta-llama/Meta-Llama-3-70B-Instruct", |
|
"Hyperbolic: NousResearch/Hermes-3-Llama-3.1-70B", |
|
"Hyperbolic: Qwen/Qwen2.5-72B-Instruct", |
|
"Hyperbolic: deepseek-ai/DeepSeek-V2.5", |
|
"Hyperbolic: meta-llama/Meta-Llama-3.1-405B-Instruct", |
|
] |
|
|
|
|
|
def generate_discussion_prompt(original_question: str, previous_responses: list[str]) -> str: |
|
"""Generate a prompt for models to discuss and build upon previous |
|
responses. |
|
""" |
|
prompt = f"""You are participating in a multi-AI discussion about this question: "{original_question}" |
|
|
|
Previous responses from other AI models: |
|
{chr(10).join(f"- {response}" for response in previous_responses)} |
|
|
|
Please provide your perspective while: |
|
1. Acknowledging key insights from previous responses |
|
2. Adding any missing important points |
|
3. Respectfully noting if you disagree with anything and explaining why |
|
4. Building towards a complete answer |
|
|
|
Keep your response focused and concise (max 3-4 paragraphs).""" |
|
return prompt |
|
|
|
|
|
def generate_consensus_prompt(original_question: str, discussion_history: list[str]) -> str: |
|
"""Generate a prompt for final consensus building.""" |
|
return f"""Review this multi-AI discussion about: "{original_question}" |
|
|
|
Discussion history: |
|
{chr(10).join(discussion_history)} |
|
|
|
As a final synthesizer, please: |
|
1. Identify the key points where all models agreed |
|
2. Explain how any disagreements were resolved |
|
3. Present a clear, unified answer that represents our collective best understanding |
|
4. Note any remaining uncertainties or caveats |
|
|
|
Keep the final consensus concise but complete.""" |
|
|
|
|
|
def chat_with_openai(model: str, messages: list[dict], api_key: str | None) -> str: |
|
import openai |
|
|
|
client = openai.OpenAI(api_key=api_key) |
|
response = client.chat.completions.create(model=model, messages=messages) |
|
return response.choices[0].message.content |
|
|
|
|
|
def chat_with_anthropic(messages: list[dict], api_key: str | None) -> str: |
|
"""Chat with Anthropic's Claude model.""" |
|
client = Anthropic(api_key=api_key) |
|
response = client.messages.create(model="claude-3-sonnet-20240229", messages=messages, max_tokens=1024) |
|
return response.content[0].text |
|
|
|
|
|
def chat_with_gemini(messages: list[dict], api_key: str | None) -> str: |
|
"""Chat with Gemini Pro model.""" |
|
genai.configure(api_key=api_key) |
|
model = genai.GenerativeModel("gemini-pro") |
|
|
|
|
|
gemini_messages = [] |
|
for msg in messages: |
|
role = "user" if msg["role"] == "user" else "model" |
|
gemini_messages.append({"role": role, "parts": [msg["content"]]}) |
|
|
|
response = model.generate_content([m["parts"][0] for m in gemini_messages]) |
|
return response.text |
|
|
|
|
|
def chat_with_sambanova( |
|
messages: list[dict], api_key: str | None, model_name: str = "Llama-3.2-90B-Vision-Instruct" |
|
) -> str: |
|
"""Chat with SambaNova's models using their OpenAI-compatible API.""" |
|
client = openai.OpenAI( |
|
api_key=api_key, |
|
base_url="https://api.sambanova.ai/v1", |
|
) |
|
|
|
response = client.chat.completions.create( |
|
model=model_name, |
|
messages=messages, |
|
temperature=0.1, |
|
top_p=0.1, |
|
) |
|
return response.choices[0].message.content |
|
|
|
|
|
def chat_with_hyperbolic( |
|
messages: list[dict], api_key: str | None, model_name: str = "Qwen/Qwen2.5-Coder-32B-Instruct" |
|
) -> str: |
|
"""Chat with Hyperbolic's models using their OpenAI-compatible API.""" |
|
client = OpenAI(api_key=api_key, base_url="https://api.hyperbolic.xyz/v1") |
|
|
|
|
|
full_messages = [ |
|
{"role": "system", "content": "You are a helpful assistant. Be descriptive and clear."}, |
|
*messages, |
|
] |
|
|
|
response = client.chat.completions.create( |
|
model=model_name, |
|
messages=full_messages, |
|
temperature=0.7, |
|
max_tokens=1024, |
|
) |
|
return response.choices[0].message.content |
|
|
|
|
|
def multi_model_consensus( |
|
question: str, selected_models: list[str], rounds: int = 3, progress: gr.Progress = gr.Progress() |
|
) -> list[tuple[str, str]]: |
|
if not selected_models: |
|
raise gr.Error("Please select at least one model to chat with.") |
|
|
|
chat_history = [] |
|
discussion_history = [] |
|
|
|
|
|
progress(0, desc="Getting initial responses...") |
|
initial_responses = [] |
|
for i, model in enumerate(selected_models): |
|
provider, model_name = model.split(": ", 1) |
|
|
|
try: |
|
if provider == "Anthropic": |
|
api_key = os.getenv("ANTHROPIC_API_KEY") |
|
response = chat_with_anthropic(messages=[{"role": "user", "content": question}], api_key=api_key) |
|
elif provider == "SambaNova": |
|
api_key = os.getenv("SAMBANOVA_API_KEY") |
|
response = chat_with_sambanova( |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant"}, |
|
{"role": "user", "content": question}, |
|
], |
|
api_key=api_key, |
|
) |
|
elif provider == "Hyperbolic": |
|
api_key = os.getenv("HYPERBOLIC_API_KEY") |
|
response = chat_with_hyperbolic(messages=[{"role": "user", "content": question}], api_key=api_key) |
|
else: |
|
api_key = os.getenv("GEMINI_API_KEY") |
|
response = chat_with_gemini(messages=[{"role": "user", "content": question}], api_key=api_key) |
|
|
|
initial_responses.append(f"{model}: {response}") |
|
discussion_history.append(f"Initial response from {model}:\n{response}") |
|
chat_history.append((f"Initial response from {model}", response)) |
|
except Exception as e: |
|
chat_history.append((f"Error from {model}", str(e))) |
|
|
|
|
|
for round_num in range(rounds): |
|
progress((round_num + 1) / (rounds + 2), desc=f"Discussion round {round_num + 1}...") |
|
round_responses = [] |
|
|
|
random.shuffle(selected_models) |
|
for model in selected_models: |
|
provider, model_name = model.split(": ", 1) |
|
|
|
try: |
|
discussion_prompt = generate_discussion_prompt(question, discussion_history) |
|
if provider == "Anthropic": |
|
api_key = os.getenv("ANTHROPIC_API_KEY") |
|
response = chat_with_anthropic( |
|
messages=[{"role": "user", "content": discussion_prompt}], api_key=api_key |
|
) |
|
elif provider == "SambaNova": |
|
api_key = os.getenv("SAMBANOVA_API_KEY") |
|
response = chat_with_sambanova( |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant"}, |
|
{"role": "user", "content": discussion_prompt}, |
|
], |
|
api_key=api_key, |
|
) |
|
elif provider == "Hyperbolic": |
|
api_key = os.getenv("HYPERBOLIC_API_KEY") |
|
response = chat_with_hyperbolic( |
|
messages=[{"role": "user", "content": discussion_prompt}], api_key=api_key |
|
) |
|
else: |
|
api_key = os.getenv("GEMINI_API_KEY") |
|
response = chat_with_gemini( |
|
messages=[{"role": "user", "content": discussion_prompt}], api_key=api_key |
|
) |
|
|
|
round_responses.append(f"{model}: {response}") |
|
discussion_history.append(f"Round {round_num + 1} - {model}:\n{response}") |
|
chat_history.append((f"Round {round_num + 1} - {model}", response)) |
|
except Exception as e: |
|
chat_history.append((f"Error from {model} in round {round_num + 1}", str(e))) |
|
|
|
|
|
progress(0.9, desc="Building final consensus...") |
|
model = selected_models[0] |
|
provider, model_name = model.split(": ", 1) |
|
|
|
try: |
|
consensus_prompt = generate_consensus_prompt(question, discussion_history) |
|
if provider == "Anthropic": |
|
api_key = os.getenv("ANTHROPIC_API_KEY") |
|
final_consensus = chat_with_anthropic( |
|
messages=[{"role": "user", "content": consensus_prompt}], api_key=api_key |
|
) |
|
elif provider == "SambaNova": |
|
api_key = os.getenv("SAMBANOVA_API_KEY") |
|
final_consensus = chat_with_sambanova( |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant"}, |
|
{"role": "user", "content": consensus_prompt}, |
|
], |
|
api_key=api_key, |
|
) |
|
elif provider == "Hyperbolic": |
|
api_key = os.getenv("HYPERBOLIC_API_KEY") |
|
final_consensus = chat_with_hyperbolic( |
|
messages=[{"role": "user", "content": consensus_prompt}], api_key=api_key |
|
) |
|
else: |
|
api_key = os.getenv("GEMINI_API_KEY") |
|
final_consensus = chat_with_gemini( |
|
messages=[{"role": "user", "content": consensus_prompt}], api_key=api_key |
|
) |
|
except Exception as e: |
|
final_consensus = f"Error getting consensus from {model}: {e!s}" |
|
|
|
chat_history.append(("Final Consensus", final_consensus)) |
|
|
|
progress(1.0, desc="Done!") |
|
return chat_history |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Experimental Multi-Model Consensus Chat") |
|
gr.Markdown( |
|
"""Select multiple models to collaborate on answering your question. |
|
The models will discuss with each other and attempt to reach a consensus. |
|
Maximum 3 models can be selected at once.""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_selector = gr.Dropdown( |
|
choices=get_all_models(), |
|
multiselect=True, |
|
label="Select Models (max 3)", |
|
info="Choose up to 3 models to participate in the discussion", |
|
value=["SambaNova: Llama-3.2-90B-Vision-Instruct", "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct"], |
|
max_choices=3, |
|
) |
|
rounds_slider = gr.Slider( |
|
minimum=1, |
|
maximum=2, |
|
value=1, |
|
step=1, |
|
label="Discussion Rounds", |
|
info="Number of rounds of discussion between models", |
|
) |
|
|
|
chatbot = gr.Chatbot(height=600, label="Multi-Model Discussion") |
|
msg = gr.Textbox(label="Your Question", placeholder="Ask a question for the models to discuss...") |
|
|
|
def respond(message, selected_models, rounds): |
|
chat_history = multi_model_consensus(message, selected_models, rounds) |
|
return chat_history |
|
|
|
msg.submit(respond, [msg, model_selector, rounds_slider], [chatbot], api_name="consensus_chat") |
|
|
|
for fn in demo.fns.values(): |
|
fn.api_name = False |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|