|
import gradio as gr |
|
from gradio_client import Client, handle_file |
|
|
|
MODELS = {"SmolVLM-Instruct": "akhaliq/SmolVLM-Instruct"} |
|
|
|
|
|
def create_chat_fn(client): |
|
def chat(message, history): |
|
|
|
text = message.get("text", "") |
|
files = message.get("files", []) |
|
|
|
|
|
processed_files = [handle_file(f) for f in files] |
|
|
|
response = client.predict( |
|
message={"text": text, "files": processed_files}, |
|
system_prompt="You are a helpful AI assistant.", |
|
temperature=0.7, |
|
max_new_tokens=1024, |
|
top_k=40, |
|
repetition_penalty=1.1, |
|
top_p=0.95, |
|
api_name="/chat", |
|
) |
|
return response |
|
|
|
return chat |
|
|
|
|
|
def set_client_for_session(model_name, request: gr.Request): |
|
headers = {} |
|
if request and hasattr(request, "headers"): |
|
x_ip_token = request.headers.get("x-ip-token") |
|
if x_ip_token: |
|
headers["X-IP-Token"] = x_ip_token |
|
|
|
return Client(MODELS[model_name], headers=headers) |
|
|
|
|
|
def safe_chat_fn(message, history, client): |
|
if client is None: |
|
return "Error: Client not initialized. Please refresh the page." |
|
try: |
|
return create_chat_fn(client)(message, history) |
|
except Exception as e: |
|
print(f"Error during chat: {str(e)}") |
|
return f"Error during chat: {str(e)}" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
|
client = gr.State() |
|
|
|
model_dropdown = gr.Dropdown( |
|
choices=list(MODELS.keys()), value="SmolVLM-Instruct", label="Select Model", interactive=True |
|
) |
|
|
|
chat_interface = gr.ChatInterface(fn=safe_chat_fn, additional_inputs=[client], multimodal=True) |
|
|
|
|
|
model_dropdown.change(fn=set_client_for_session, inputs=[model_dropdown], outputs=[client]) |
|
|
|
|
|
demo.load(fn=set_client_for_session, inputs=[gr.State("SmolVLM-Instruct")], outputs=[client]) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|