JiaenLiu commited on
Commit
393add1
·
2 Parent(s): 0a00054 9387453

Merge pull request #51 from project-kxkg/evaluation

Browse files

Evaluation

Former-commit-id: ef5be7bdfbbb13908d071d9a8785d3b06be1143f

README.md CHANGED
@@ -1,4 +1,4 @@
1
- # PROJECT-T
2
 
3
  ## Installation
4
 
@@ -51,4 +51,4 @@ options:
51
 
52
  ## Notice
53
  if you cannot download youtube video, please follow the link below.
54
- https://github.com/pytube/pytube/issues/1498
 
1
+ # Pigeon AI: Automatic Video Translation Toolkit
2
 
3
  ## Installation
4
 
 
51
 
52
  ## Notice
53
  if you cannot download youtube video, please follow the link below.
54
+ https://github.com/pytube/pytube/issues/1498
evaluation/alignment.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import numpy as np
3
+ sys.path.append('../src')
4
+ from srt_util.srt import SrtScript
5
+ from srt_util.srt import SrtSegment
6
+
7
+
8
+ # Helper method
9
+ # Align sub anchor segment pair via greedy approach
10
+ # Input: anchor segment, SRT segments, output array of sub, index of current sub
11
+ # Output: updated index of sub
12
+ def procedure(anchor, subsec, S_arr, subidx):
13
+ cache_idx = 0
14
+ while subidx != cache_idx: # Terminate when alignment stablizes
15
+ cache_idx = subidx
16
+ # if sub segment runs out during the loop, terminate
17
+ if subidx >= len(subsec):
18
+ break
19
+ sub = subsec[subidx]
20
+ if anchor.end < sub.start:
21
+ continue
22
+ # If next sub has a heavier overlap compartment, add to current alignment
23
+ if (anchor.start <= sub.start) and (sub.end <= anchor.end) or anchor.end - sub.start > sub.end - anchor.start:
24
+ S_arr[-1] += sub#.source_text
25
+ subidx += 1
26
+
27
+ return subidx - 1 # Reset last invalid update from loop
28
+
29
+
30
+ # Input: path1, path2
31
+ # Output: aligned array of SRTsegment corresponding to path1 path2
32
+ # Note: Modify comment with .source_text to get output array with string only
33
+ def alignment_obsolete(pred_path, gt_path):
34
+ empt = SrtSegment([0,'00:00:00,000 --> 00:00:00,000','','',''])
35
+ pred = SrtScript.parse_from_srt_file(pred_path).segments
36
+ gt = SrtScript.parse_from_srt_file(gt_path).segments
37
+ pred_arr, gt_arr = [], []
38
+ idx_p, idx_t = 0, 0 # idx_p: current index of pred segment, idx_t for ground truth
39
+
40
+ while idx_p < len(pred) or idx_t < len(gt):
41
+ # Check if one srt file runs out while reading
42
+ ps = pred[idx_p] if idx_p < len(pred) else None
43
+ gs = gt[idx_t] if idx_t < len(gt) else None
44
+
45
+ if not ps:
46
+ # If ps runs out, align gs segment with filler one by one
47
+ gt_arr.append(gs)#.source_text
48
+ pred_arr.append(empt)
49
+ idx_t += 1
50
+ continue
51
+
52
+ if not gs:
53
+ # If gs runs out, align ps segment with filler one by one
54
+ pred_arr.append(ps)#.source_text
55
+ gt_arr.append(empt)
56
+ idx_p += 1
57
+ continue
58
+
59
+ ps_dur = ps.end - ps.start
60
+ gs_dur = gs.end - gs.start
61
+
62
+ # Check for duration to decide anchor and sub
63
+ if ps_dur <= gs_dur:
64
+ # Detect segment with no overlap
65
+ if ps.end < gs.start:
66
+ pred_arr.append(ps)#.source_text
67
+ gt_arr.append(empt) # append filler
68
+ idx_t -= 1 # reset ground truth index
69
+ else:
70
+
71
+ if gs.end >= ps.start:
72
+ gt_arr.append(gs)#.source_text
73
+ pred_arr.append(ps)#.source_text
74
+ idx_p = procedure(gs, pred, pred_arr, idx_p + 1)
75
+ else:
76
+ gt_arr[len(gt_arr) - 1] += gs#.source_text
77
+ #pred_arr.append(empt)
78
+ idx_p -= 1
79
+ else:
80
+ # same overlap checking procedure
81
+ if gs.end < ps.start:
82
+ gt_arr.append(gs)#.source_text
83
+ pred_arr.append(empt) # filler
84
+ idx_p -= 1 # reset
85
+ else:
86
+ if ps.end >= gs.start:
87
+ pred_arr.append(ps)#.source_text
88
+ gt_arr.append(gs)#.source_text
89
+ idx_t = procedure(ps, gt, gt_arr, idx_t + 1)
90
+ else: # filler pairing
91
+ pred_arr[len(pred_arr) - 1] += ps
92
+ idx_t -= 1
93
+
94
+ idx_p += 1
95
+ idx_t += 1
96
+ #for a in gt_arr:
97
+ # print(a.translation)
98
+ return zip(pred_arr, gt_arr)
99
+
100
+ # Input: path1, path2, threshold = 0.5 sec by default
101
+ # Output: aligned array of SRTsegment corresponding to path1 path2
102
+ def alignment(pred_path, gt_path, threshold=0.5):
103
+ empt = SrtSegment([0, '00:00:00,000 --> 00:00:00,000', '', '', ''])
104
+ pred = SrtScript.parse_from_srt_file(pred_path).segments
105
+ gt = SrtScript.parse_from_srt_file(gt_path).segments
106
+ pred_arr, gt_arr = [], []
107
+ idx_p, idx_t = 0, 0
108
+
109
+ while idx_p < len(pred) or idx_t < len(gt):
110
+ ps = pred[idx_p] if idx_p < len(pred) else empt
111
+ gs = gt[idx_t] if idx_t < len(gt) else empt
112
+
113
+ # Merging sequence for pred
114
+ while idx_p + 1 < len(pred) and pred[idx_p + 1].end <= gs.end + threshold:
115
+ ps += pred[idx_p + 1]
116
+ idx_p += 1
117
+
118
+ # Merging sequence for gt
119
+ while idx_t + 1 < len(gt) and gt[idx_t + 1].end <= ps.end + threshold:
120
+ gs += gt[idx_t + 1]
121
+ idx_t += 1
122
+
123
+ # Append to the result arrays
124
+ pred_arr.append(ps)
125
+ gt_arr.append(gs)
126
+ idx_p += 1
127
+ idx_t += 1
128
+
129
+
130
+ #for a in pred_arr:
131
+ # print(a.translation)
132
+ #for a in gt_arr:
133
+ # print(a.source_text)
134
+
135
+ return zip(pred_arr, gt_arr)
136
+
137
+
138
+ # Test Case
139
+ #alignment('test_translation_s2.srt', 'test_translation_zh.srt')
evaluation/evaluation.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import pandas as pd
3
+ from alignment import alignment
4
+ from scores.multi_scores import multi_scores
5
+
6
+ class Evaluator:
7
+ def __init__(self, pred_path, gt_path, eval_path, res_path):
8
+ self.pred_path = pred_path
9
+ self.gt_path = gt_path
10
+ self.eval_path = eval_path
11
+ self.res_path = res_path
12
+
13
+ def eval(self):
14
+ # Align two SRT files
15
+ aligned_srt = alignment(self.pred_path, self.gt_path)
16
+
17
+ # Get sentence scores
18
+ scorer = multi_scores()
19
+ result_data = []
20
+ for (pred_s, gt_s) in aligned_srt:
21
+ print("pred_s.source_text: ", pred_s.source_text)
22
+ print("pred_s.translation: ", pred_s.translation)
23
+ print("gt_s.source_text: ", gt_s.source_text)
24
+
25
+ scores_dict = scorer.get_scores(pred_s.source_text, pred_s.translation, gt_s.source_text)
26
+ print("scores_dict: ", scores_dict)
27
+
28
+ scores_dict['Source'] = pred_s.source_text
29
+ scores_dict['Prediction'] = pred_s.translation
30
+ scores_dict['Ground Truth'] = gt_s.source_text
31
+ result_data.append(scores_dict)
32
+
33
+ eval_df = pd.DataFrame(result_data)
34
+ eval_df.to_csv(self.eval_path, index=False, columns=['Source', 'Prediction', 'Ground Truth', 'bleu_score', 'comet_score', 'llm_score', 'llm_explanation'])
35
+
36
+ # Get average scores
37
+ avg_llm = eval_df['llm_score'].mean()
38
+ avg_bleu = eval_df['bleu_score'].mean()
39
+ avg_comet = eval_df['comet_score'].mean()
40
+
41
+ res_data = {
42
+ 'Metric': ['Avg LLM', 'Avg BLEU', 'Avg COMET'],
43
+ 'Score': [avg_llm, avg_bleu, avg_comet]
44
+ }
45
+ res_df = pd.DataFrame(res_data)
46
+ res_df.to_csv(self.res_path, index=False)
47
+
48
+ if __name__ == "__main__":
49
+ parser = argparse.ArgumentParser(description='Evaluate SRT files.')
50
+ parser.add_argument('-bi_path', default='evaluation/test5_tiny/test5_bi.srt', help='Path to predicted SRT file')
51
+ parser.add_argument('-zh_path', default='evaluation/test5_tiny/test5_gt.srt', help='Path to ground truth SRT file')
52
+ parser.add_argument('-eval_output', default='evaluation/test5_tiny/eval.csv', help='Path to eval CSV file')
53
+ parser.add_argument('-res_output', default='evaluation/test5_tiny/res.csv', help='Path to result CSV file')
54
+ args = parser.parse_args()
55
+
56
+ evaluator = Evaluator(args.bi_path, args.zh_path, args.eval_output, args.res_output)
57
+ evaluator.eval()
58
+
evaluation/readme.md ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Evaluation:
2
+ BLEU (https://github.com/mjpost/sacrebleu)
3
+ COMET (https://github.com/Unbabel/COMET)
4
+ LLM eval
5
+ Eval time stamp
6
+
7
+ Sep 18 - Sep 25
8
+ Proj-t
9
+ src
10
+ evaluation
11
+ - scores
12
+ - LLM_eval.py (jiaen)
13
+ - scores.py (wizard)
14
+ - comet
15
+ - sacrebleu
16
+ - alignment.py (david)
17
+ - evaluation.py (not assigned)
18
+ - results
19
+ - mmddyy-HMS-results.csv
20
+ - logs
21
+
22
+ entry:
23
+ Python3 evaluation/evaluation.py –pred path/to/pred –gt path/to/gt
24
+
evaluation/scores/LLM_eval.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # This script is used to evaluate the performance of Pigeon AI Video Translation system by using Large Language Model.
3
+
4
+ # Written by Jiaen LIU, 2023/09/18
5
+
6
+ # Import the necessary packages
7
+ import re
8
+ from langchain.evaluation import load_evaluator, EvaluatorType
9
+ from langchain.prompts import PromptTemplate
10
+ from langchain.chat_models import ChatOpenAI
11
+ # from src.srt_util.srt import SrtScript
12
+
13
+ # Load the evaluator
14
+
15
+ def init_evaluator(source_lang="en", target_lang="zh", domain="startcraft2", model="gpt-4-0613"):
16
+
17
+ # map the language code to the language name
18
+ language_map = {
19
+ "en": "English",
20
+ "zh": "Chinese",
21
+ }
22
+
23
+ llm = ChatOpenAI(temperature=0, model=model)
24
+
25
+ # Completeness is the percentage of the input that is translated
26
+ # Accuracy is the percentage of the translation that is correct
27
+ fstring = """
28
+ You are grading the translation based on following input:
29
+ {input}
30
+ if the input is "", that means there is no input sentence.
31
+ you should grade the translation based on the reference translation:
32
+ Here is the real answer(reference):
33
+ {reference}
34
+ You are grading the following translation:
35
+ {output}
36
+ based on the following criteria:
37
+ {criteria}
38
+ Give two grades, accuracy and completeness rate them from a scale of 0 to 100, where 0 is the lowest (very low accuracy/completeness) and 100 is the highest (very high accuracy/completeness)?
39
+ Give explanations for every single one and if the answer if partially correct that is acceptable. However punish the scores for answers that are
40
+ numerically incorrect this also includes values that have the $ in front
41
+ Please give the completeness score first followed by the accuracy score.
42
+ For example:
43
+ Accuracy: 40. Explanation here
44
+ Completeness: 80. Explanation here
45
+ Do not differ from the format ever
46
+ """
47
+
48
+ if source_lang in language_map and target_lang in language_map:
49
+ lang_str = f"You are an expert {language_map[source_lang]} to {language_map[target_lang]} translator specialized in {domain}."
50
+ prompt = PromptTemplate.from_template(lang_str+fstring, template_format="f-string")
51
+
52
+ else:
53
+ print("The language code is not supported, please check the language code.")
54
+ prompt = PromptTemplate.from_template(fstring, template_format="f-string")
55
+
56
+ return load_evaluator("labeled_criteria", llm=llm, prompt=prompt, criteria="correctness")
57
+
58
+ # prase the output of the evaluation
59
+ # example :
60
+ # 'value': 'Accuracy: 80. The predicted answer is partially correct. The sentence "这是一个测试句子" translates to "This is a test sentence" in English. However, the original sentence is "This is an test sentences" which is grammatically incorrect in English. The correct translation should be "这是一个测试句子" if we correct the English sentence to "This is a test sentence". Therefore, the predicted answer is not entirely wrong, but it does not match the original sentence exactly due to the grammatical error in the original sentence.'
61
+ # def parse_eval_result(eval_result):
62
+ # # score = eval_result.score
63
+ # value = eval_result["value"]
64
+ # value = value.split("Accuracy: ")[1].split(".")
65
+ # # combine the rest of the string into the whole explanation
66
+ # explanation = ".".join(value[1:])
67
+ # return int(value[0]), explanation
68
+
69
+ # def parse_eval_result(eval_result):
70
+ # # Extract the 'Accuracy' score using a regular expression from the 'reasoning' key
71
+ # accuracy_match = re.search(r'Accuracy: (\d+)', eval_result['value'])
72
+ # print(accuracy_match)
73
+ # if accuracy_match:
74
+ # accuracy = int(accuracy_match.group(1))
75
+ # else:
76
+ # # try to get the accuracy from the 'value' key
77
+ # accuracy = 0
78
+
79
+ # # Directly get the 'Explanation' value from the 'value' key
80
+ # explanation = eval_result['value']
81
+
82
+ # return accuracy, explanation
83
+
84
+ def parse_eval_result(data):
85
+ # Extract the value string
86
+ value_str = data.get('value', '')
87
+ reasoning_str = data.get('reasoning', '')
88
+
89
+ # Use regex to extract accuracy value and explanation
90
+ accuracy_match = re.search(r'Accuracy: (\d+)', value_str)
91
+ acc_explanation_match = re.search(r'Accuracy: \d+\. (.+)', value_str)
92
+
93
+ # Use regex to extract completeness value and explanation
94
+ completeness_match = re.search(r'Completeness: (\d+)', reasoning_str)
95
+ completeness_explanation_match = re.search(r'Completeness: \d+\. (.+)', reasoning_str)
96
+
97
+ # Extract the matched groups
98
+ completeness = int(completeness_match.group(1)) if completeness_match else None
99
+ completeness_explanation = completeness_explanation_match.group(1) if completeness_explanation_match else None
100
+ accuracy = int(accuracy_match.group(1)) if accuracy_match else None
101
+ acc_explanation = acc_explanation_match.group(1) if acc_explanation_match else None
102
+
103
+ return (accuracy, acc_explanation), (completeness, completeness_explanation)
104
+
105
+ def evaluate_prediction(input, reference, prediction, evaluator):
106
+ eval_result = evaluator.evaluate_strings(
107
+ prediction=prediction,
108
+ input=input,
109
+ reference=reference,
110
+ )
111
+ # print(eval_result)
112
+ return parse_eval_result(eval_result)
113
+
114
+ if __name__ == "__main__":
115
+ evaluator = init_evaluator()
116
+ # For no input english sentence, just put "" in the input
117
+ accuracy, completeness = evaluate_prediction("this is an test sentences", "这不是一个测试语句。", "这是一个测试句子。", evaluator)
118
+ print("Accuracy:", accuracy[0])
119
+ print("Acc_Explanation:", accuracy[1])
120
+ print("Completeness:", completeness[0])
121
+ print("Comp_Explanation:", completeness[1])
evaluation/scores/__init__.py ADDED
File without changes
evaluation/scores/multi_scores.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from comet import download_model, load_from_checkpoint
2
+ from sacrebleu.metrics import BLEU, CHRF, TER
3
+ from scores import LLM_eval
4
+ # import LLM_eval
5
+
6
+ class multi_scores:
7
+ def __init__(self, source_lang="en", target_lang="zh", domain="starcraft 2") -> None:
8
+ self.comet_model = load_from_checkpoint(download_model("Unbabel/wmt22-comet-da"))
9
+ self.bleu_model = BLEU(tokenize=target_lang)
10
+ self.LLM_model = LLM_eval.init_evaluator(source_lang=source_lang, target_lang=target_lang, domain=domain)
11
+ # self.score = {}
12
+
13
+ def __preprocess(self, src:str, mt:str, ref:str) -> dict:
14
+ # remove the space in the beginning and end of the sentence\
15
+ src = src.strip()
16
+ mt = mt.strip()
17
+ ref = ref.strip()
18
+ print(src, mt, ref)
19
+ return {'src':src, 'mt':mt, 'ref':ref}
20
+
21
+
22
+
23
+ # The function to get the scores
24
+ # src: orginal sentence
25
+ # mt: machine translation
26
+ # ref: reference translation
27
+ def calculate_comet_llm(self, src:str, mt:str, ref:str) -> dict:
28
+ # preprocess the input
29
+ src, mt, ref = self.__preprocess(src, mt, ref)
30
+ comet_score = self.comet_model.predict([{"src":src, "mt":mt, "ref":ref}], batch_size=8, gpus=0).scores[0]
31
+ # bleu_score = self.bleu_model.corpus_score([mt], [ref]).score
32
+ llm_acc, llm_completeness = LLM_eval.evaluate_prediction(src, ref, mt, self.LLM_model)
33
+ return {'comet_score':comet_score, 'llm_score':llm_acc[0], 'llm_explanation': llm_acc[1]}
34
+ # self.score['bleu_score'] = bleu_score
35
+ # self.score['comet_score'] = comet_score
36
+ # self.score['llm_score'] = llm_score
37
+ # self.score['llm_explanation'] = llm_explanation
38
+
39
+ def calculate_bleu(self, mts:list, refs:list) -> dict:
40
+ # src, mt, ref = self.__preprocess(src, mt, ref)
41
+ # remove the space in the beginning and end of the sentence for each sentence
42
+ # mts = [mt.strip() for mt in mts]
43
+ # refs = [ref.strip() for ref in refs]
44
+ # print(mts, refs)
45
+ # mt and ref are list of sentences
46
+ bleu_score = self.bleu_model.corpus_score(mts, refs).score
47
+ return {'bleu_score':bleu_score}
48
+
49
+ def get_scores(self, src:str, mt:str, ref:str) -> dict:
50
+ comet_score = self.comet_model.predict([{"src":src, "mt":mt, "ref":ref}], batch_size=8, gpus=0).scores[0]
51
+ bleu_score = self.bleu_model.corpus_score([mt], [[ref]]).score
52
+ llm_acc, llm_completeness = LLM_eval.evaluate_prediction(src, ref, mt, self.LLM_model)
53
+ return {'bleu_score':bleu_score ,'comet_score':comet_score, 'llm_score':llm_acc[0], 'llm_explanation': llm_acc[1]}
54
+
55
+
56
+ if __name__ == "__main__":
57
+ src = "South Korea playing with the Blue Proto's Probes"
58
+ mt = "位于对角线的另一个角落 使用蓝色的Proto's Probes"
59
+ ref = " 在对角落里使用蓝色神族探机 他的名字是..."
60
+ # print(multi_scores().get_scores(src, mt, ref))
61
+ # print(multi_scores().calculate_comet_llm(src, mt, ref))
62
+ print(multi_scores().calculate_bleu([mt], [[ref]]))
63
+
evaluation/scores/score.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from comet import download_model, load_from_checkpoint
2
+ from sacrebleu.metrics import BLEU, CHRF, TER
3
+
4
+ def COMETscore(src, mt, ref):
5
+ data = []
6
+ for i in enumerate(src):
7
+ data.append({"src":src[i], "mt":mt[i], "ref":ref[i]})
8
+ model_path = download_model("Unbabel/wmt22-comet-da")
9
+ model = load_from_checkpoint(model_path)
10
+ model_output = model.predict(data, batch_size = 8, gpus=0)
11
+ return model_output
12
+
13
+ def BLEUscore(sys, refs):
14
+ bleu = BLEU()
15
+ return bleu.corpus_score(sys, refs)
requirement.txt CHANGED
@@ -38,3 +38,5 @@ tqdm==4.65.0
38
  typing_extensions==4.5.0
39
  urllib3==1.26.15
40
  yarl==1.8.2
 
 
 
38
  typing_extensions==4.5.0
39
  urllib3==1.26.15
40
  yarl==1.8.2
41
+ sacrebleu==2.3.1
42
+ unbabel-comet==2.1.0
src/srt_util/srt.py CHANGED
@@ -50,7 +50,10 @@ class SrtSegment(object):
50
  self.start = int(start_list[0]) * 3600 + int(start_list[1]) * 60 + int(start_list[2]) + self.start_ms / 100
51
  end_list = self.end_time_str.split(',')[0].split(':')
52
  self.end = int(end_list[0]) * 3600 + int(end_list[1]) * 60 + int(end_list[2]) + self.end_ms / 100
53
- self.translation = ""
 
 
 
54
 
55
  def merge_seg(self, seg):
56
  """
@@ -105,10 +108,16 @@ class SrtScript(object):
105
  def parse_from_srt_file(cls, path: str):
106
  with open(path, 'r', encoding="utf-8") as f:
107
  script_lines = [line.rstrip() for line in f.readlines()]
108
-
 
 
109
  segments = []
110
- for i in range(0, len(script_lines), 4):
111
- segments.append(list(script_lines[i:i + 4]))
 
 
 
 
112
 
113
  return cls(segments)
114
 
 
50
  self.start = int(start_list[0]) * 3600 + int(start_list[1]) * 60 + int(start_list[2]) + self.start_ms / 100
51
  end_list = self.end_time_str.split(',')[0].split(':')
52
  self.end = int(end_list[0]) * 3600 + int(end_list[1]) * 60 + int(end_list[2]) + self.end_ms / 100
53
+ if len(args[0]) < 5:
54
+ self.translation = ""
55
+ else:
56
+ self.translation = args[0][3]
57
 
58
  def merge_seg(self, seg):
59
  """
 
108
  def parse_from_srt_file(cls, path: str):
109
  with open(path, 'r', encoding="utf-8") as f:
110
  script_lines = [line.rstrip() for line in f.readlines()]
111
+ bilingual = False
112
+ if script_lines[2] != '' and script_lines[3] != '':
113
+ bilingual = True
114
  segments = []
115
+ if bilingual:
116
+ for i in range(0, len(script_lines), 5):
117
+ segments.append(list(script_lines[i:i + 5]))
118
+ else:
119
+ for i in range(0, len(script_lines), 4):
120
+ segments.append(list(script_lines[i:i + 4]))
121
 
122
  return cls(segments)
123