Spaces:
Sleeping
Sleeping
Create fine_tune.py
Browse files- fine_tune.py +47 -0
fine_tune.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Trainer, TrainingArguments, AutoModelForSequenceClassification, AutoTokenizer
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
# Model Pre-trained
|
5 |
+
MODEL_NAME = "indobenchmark/indobert-base-p2"
|
6 |
+
|
7 |
+
# Load Dataset
|
8 |
+
dataset = load_dataset("csv", data_files="dataset.csv")
|
9 |
+
|
10 |
+
# Tokenizer
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
12 |
+
|
13 |
+
def preprocess(data):
|
14 |
+
return tokenizer(data['pertanyaan'], padding="max_length", truncation=True)
|
15 |
+
|
16 |
+
# Preprocessing
|
17 |
+
dataset = dataset.map(preprocess, batched=True)
|
18 |
+
dataset = dataset.rename_column("jawaban", "labels")
|
19 |
+
dataset.set_format("torch", columns=["input_ids", "attention_mask", "labels"])
|
20 |
+
|
21 |
+
# Load Model
|
22 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=2)
|
23 |
+
|
24 |
+
# Training Arguments
|
25 |
+
training_args = TrainingArguments(
|
26 |
+
output_dir="./results",
|
27 |
+
evaluation_strategy="epoch",
|
28 |
+
learning_rate=2e-5,
|
29 |
+
per_device_train_batch_size=16,
|
30 |
+
num_train_epochs=3,
|
31 |
+
save_total_limit=2
|
32 |
+
)
|
33 |
+
|
34 |
+
# Trainer
|
35 |
+
trainer = Trainer(
|
36 |
+
model=model,
|
37 |
+
args=training_args,
|
38 |
+
train_dataset=dataset['train'],
|
39 |
+
eval_dataset=dataset['validation']
|
40 |
+
)
|
41 |
+
|
42 |
+
# Train Model
|
43 |
+
trainer.train()
|
44 |
+
|
45 |
+
# Save Model
|
46 |
+
model.save_pretrained("./fine_tuned_model")
|
47 |
+
print("Model telah dilatih ulang dan disimpan ke './fine_tuned_model'.")
|