Watermarking_Generate_Text / models /watermark_faster.py
Snowball's picture
Update models/watermark_faster.py
03f6c7f
import nltk
from nltk.corpus import stopwords
from nltk import word_tokenize, pos_tag
import torch
import torch.nn.functional as F
from torch import nn
import hashlib
from scipy.stats import norm
import gensim
import pdb
from transformers import BertForMaskedLM as WoBertForMaskedLM
from wobert import WoBertTokenizer
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import BertForMaskedLM, BertTokenizer, RobertaForSequenceClassification, RobertaTokenizer
import gensim.downloader as api
import Levenshtein
import string
import spacy
import paddle
from jieba import posseg
paddle.enable_static()
import re
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('averaged_perceptron_tagger')
def cut_sent(para):
para = re.sub('([。!?\?])([^”’])', r'\1\n\2', para)
para = re.sub('([。!?\?][”’])([^,。!?\?\n ])', r'\1\n\2', para)
para = re.sub('(\.{6}|\…{2})([^”’\n])', r'\1\n\2', para)
para = re.sub('([^。!?\?]*)([::][^。!?\?\n]*)', r'\1\n\2', para)
para = re.sub('([。!?\?][”’])$', r'\1\n', para)
para = para.rstrip()
return para.split("\n")
def is_subword(token: str):
return token.startswith('##')
def binary_encoding_function(token):
hash_value = int(hashlib.sha256(token.encode('utf-8')).hexdigest(), 16)
random_bit = hash_value % 2
return random_bit
def is_similar(x, y, threshold=0.5):
distance = Levenshtein.distance(x, y)
if distance / max(len(x), len(y)) < threshold:
return True
return False
class watermark_model:
def __init__(self, language, mode, tau_word, lamda):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.language = language
self.mode = mode
self.tau_word = tau_word
self.tau_sent = 0.8
self.lamda = lamda
self.cn_tag_black_list = set(['','x','u','j','k','zg','y','eng','uv','uj','ud','nr','nrfg','nrt','nw','nz','ns','nt','m','mq','r','w','PER','LOC','ORG'])#set(['','f','u','nr','nw','nz','m','r','p','c','w','PER','LOC','ORG'])
self.en_tag_white_list = set(['MD', 'NN', 'NNS', 'UH', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'RP', 'RB', 'RBR', 'RBS', 'JJ', 'JJR', 'JJS'])
if language == 'Chinese':
self.relatedness_tokenizer = AutoTokenizer.from_pretrained("IDEA-CCNL/Erlangshen-Roberta-330M-Similarity")
self.relatedness_model = AutoModelForSequenceClassification.from_pretrained("IDEA-CCNL/Erlangshen-Roberta-330M-Similarity").to(self.device)
self.tokenizer = WoBertTokenizer.from_pretrained("junnyu/wobert_chinese_plus_base")
self.model = WoBertForMaskedLM.from_pretrained("junnyu/wobert_chinese_plus_base", output_hidden_states=True).to(self.device)
self.w2v_model = gensim.models.KeyedVectors.load_word2vec_format('sgns.merge.word.bz2', binary=False, unicode_errors='ignore', limit=50000)
elif language == 'English':
self.tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
self.model = BertForMaskedLM.from_pretrained('bert-base-cased', output_hidden_states=True).to(self.device)
self.relatedness_model = RobertaForSequenceClassification.from_pretrained('roberta-large-mnli').to(self.device)
self.relatedness_tokenizer = RobertaTokenizer.from_pretrained('roberta-large-mnli')
self.w2v_model = api.load("glove-wiki-gigaword-100")
nltk.download('stopwords')
self.stop_words = set(stopwords.words('english'))
def cut(self,ori_text,text_len):
if self.language == 'Chinese':
if len(ori_text) > text_len+5:
ori_text = ori_text[:text_len+5]
if len(ori_text) < text_len-5:
return 'Short'
return ori_text
elif self.language == 'English':
tokens = self.tokenizer.tokenize(ori_text)
if len(tokens) > text_len+5:
ori_text = self.tokenizer.convert_tokens_to_string(tokens[:text_len+5])
if len(tokens) < text_len-5:
return 'Short'
return ori_text
else:
print(f'Unsupported Language:{self.language}')
raise NotImplementedError
def sent_tokenize(self,ori_text):
if self.language == 'Chinese':
return cut_sent(ori_text)
elif self.language == 'English':
return nltk.sent_tokenize(ori_text)
def pos_filter(self, tokens, masked_token_index, input_text):
if self.language == 'Chinese':
pairs = posseg.lcut(input_text)
pos_dict = {word: pos for word, pos in pairs}
pos_list_input = [pos for _, pos in pairs]
pos = pos_dict.get(tokens[masked_token_index], '')
if pos in self.cn_tag_black_list:
return False
else:
return True
elif self.language == 'English':
pos_tags = pos_tag(tokens)
pos = pos_tags[masked_token_index][1]
if pos not in self.en_tag_white_list:
return False
if is_subword(tokens[masked_token_index]) or is_subword(tokens[masked_token_index+1]) or (tokens[masked_token_index] in self.stop_words or tokens[masked_token_index] in string.punctuation):
return False
return True
def filter_special_candidate(self, top_n_tokens, tokens,masked_token_index,input_text):
if self.language == 'English':
filtered_tokens = [tok for tok in top_n_tokens if tok not in self.stop_words and tok not in string.punctuation and pos_tag([tok])[0][1] in self.en_tag_white_list and not is_subword(tok)]
base_word = tokens[masked_token_index]
processed_tokens = [tok for tok in filtered_tokens if not is_similar(tok,base_word)]
return processed_tokens
elif self.language == 'Chinese':
pairs = posseg.lcut(input_text)
pos_dict = {word: pos for word, pos in pairs}
pos_list_input = [pos for _, pos in pairs]
pos = pos_dict.get(tokens[masked_token_index], '')
filtered_tokens = []
for tok in top_n_tokens:
watermarked_text_segtest = self.tokenizer.convert_tokens_to_string(tokens[1:masked_token_index] + [tok] + tokens[masked_token_index+1:-1])
watermarked_text_segtest = re.sub(r'(?<=[\u4e00-\u9fff])\s+(?=[\u4e00-\u9fff,。?!、:])|(?<=[\u4e00-\u9fff,。?!、:])\s+(?=[\u4e00-\u9fff])', '', watermarked_text_segtest)
pairs_tok = posseg.lcut(watermarked_text_segtest)
pos_dict_tok = {word: pos for word, pos in pairs_tok}
flag = pos_dict_tok.get(tok, '')
if flag not in self.cn_tag_black_list and flag == pos:
filtered_tokens.append(tok)
processed_tokens = filtered_tokens
return processed_tokens
def global_word_sim(self,word,ori_word):
try:
global_score = self.w2v_model.similarity(word,ori_word)
except KeyError:
global_score = 0
return global_score
def context_word_sim(self, init_candidates_list, tokens, index_space, input_text):
original_input_tensor = self.tokenizer.encode(input_text, return_tensors='pt').to(self.device)
all_cos_sims = []
for init_candidates, masked_token_index in zip(init_candidates_list, index_space):
batch_input_ids = [
[self.tokenizer.convert_tokens_to_ids(['[CLS]'] + tokens[1:masked_token_index] + [token] + tokens[masked_token_index + 1:-1] + ['[SEP]'])] for token in
init_candidates]
batch_input_tensors = torch.tensor(batch_input_ids).squeeze(1).to(self.device)
batch_input_tensors = torch.cat((batch_input_tensors, original_input_tensor), dim=0)
with torch.no_grad():
outputs = self.model(batch_input_tensors)
cos_sims = torch.zeros([len(init_candidates)]).to(self.device)
num_layers = len(outputs[1])
N = 8
i = masked_token_index
# We want to calculate similarity for the last N layers
hidden_states = outputs[1][-N:]
# Shape of hidden_states: [N, batch_size, sequence_length, hidden_size]
hidden_states = torch.stack(hidden_states)
# Separate the source and candidate hidden states
source_hidden_states = hidden_states[:, len(init_candidates):, i, :]
candidate_hidden_states = hidden_states[:, :len(init_candidates), i, :]
# Calculate cosine similarities across all layers and sum
cos_sim_sum = F.cosine_similarity(source_hidden_states.unsqueeze(2), candidate_hidden_states.unsqueeze(1), dim=-1).sum(dim=0)
cos_sim_avg = cos_sim_sum / N
cos_sims += cos_sim_avg.squeeze()
all_cos_sims.append(cos_sims.tolist())
return all_cos_sims
def sentence_sim(self, init_candidates_list, tokens, index_space, input_text):
batch_size=128
all_batch_sentences = []
all_index_lengths = []
for init_candidates, masked_token_index in zip(init_candidates_list, index_space):
if self.language == 'Chinese':
batch_sents = [self.tokenizer.convert_tokens_to_string(tokens[1:masked_token_index] + [token] + tokens[masked_token_index + 1:-1]) for token in init_candidates]
batch_sentences = [re.sub(r'(?<=[\u4e00-\u9fff])\s+(?=[\u4e00-\u9fff,。?!、:])|(?<=[\u4e00-\u9fff,。?!、:])\s+(?=[\u4e00-\u9fff])', '', sent) for sent in batch_sents]
all_batch_sentences.extend([input_text + '[SEP]' + s for s in batch_sentences])
elif self.language == 'English':
batch_sentences = [self.tokenizer.convert_tokens_to_string(tokens[1:masked_token_index] + [token] + tokens[masked_token_index + 1:-1]) for token in init_candidates]
all_batch_sentences.extend([input_text + '</s></s>' + s for s in batch_sentences])
all_index_lengths.append(len(init_candidates))
all_relatedness_scores = []
start_index = 0
for i in range(0, len(all_batch_sentences), batch_size):
batch_sentences = all_batch_sentences[i: i + batch_size]
encoded_dict = self.relatedness_tokenizer.batch_encode_plus(
batch_sentences,
padding=True,
truncation=True,
max_length=512,
return_tensors='pt')
input_ids = encoded_dict['input_ids'].to(self.device)
attention_masks = encoded_dict['attention_mask'].to(self.device)
with torch.no_grad():
outputs = self.relatedness_model(input_ids=input_ids, attention_mask=attention_masks)
logits = outputs[0]
probs = torch.softmax(logits, dim=1)
if self.language == 'Chinese':
relatedness_scores = probs[:, 1]#.tolist()
elif self.language == 'English':
relatedness_scores = probs[:, 2]#.tolist()
all_relatedness_scores.extend(relatedness_scores)
all_relatedness_scores_split = []
for length in all_index_lengths:
all_relatedness_scores_split.append(all_relatedness_scores[start_index:start_index + length])
start_index += length
return all_relatedness_scores_split
def candidates_gen(self, tokens, index_space, input_text, topk=64, dropout_prob=0.3):
input_ids_bert = self.tokenizer.convert_tokens_to_ids(tokens)
new_index_space = []
masked_text = self.tokenizer.convert_tokens_to_string(tokens)
# Create a tensor of input IDs
input_tensor = torch.tensor([input_ids_bert]).to(self.device)
with torch.no_grad():
embeddings = self.model.bert.embeddings(input_tensor.repeat(len(index_space), 1))
dropout = nn.Dropout2d(p=dropout_prob)
masked_indices = torch.tensor(index_space).to(self.device)
embeddings[torch.arange(len(index_space)), masked_indices] = dropout(embeddings[torch.arange(len(index_space)), masked_indices])
with torch.no_grad():
outputs = self.model(inputs_embeds=embeddings)
all_processed_tokens = []
for i, masked_token_index in enumerate(index_space):
predicted_logits = outputs[0][i][masked_token_index]
# Set the number of top predictions to return
n = topk
# Get the top n predicted tokens and their probabilities
probs = torch.nn.functional.softmax(predicted_logits, dim=-1)
top_n_probs, top_n_indices = torch.topk(probs, n)
top_n_tokens = self.tokenizer.convert_ids_to_tokens(top_n_indices.tolist())
processed_tokens = self.filter_special_candidate(top_n_tokens, tokens, masked_token_index,input_text)
if tokens[masked_token_index] not in processed_tokens:
processed_tokens = [tokens[masked_token_index]] + processed_tokens
all_processed_tokens.append(processed_tokens)
new_index_space.append(masked_token_index)
return all_processed_tokens,new_index_space
def filter_candidates(self, init_candidates_list, tokens, index_space, input_text, tau_word):
all_context_word_similarity_scores = self.context_word_sim(init_candidates_list, tokens, index_space, input_text)
all_sentence_similarity_scores = self.sentence_sim(init_candidates_list, tokens, index_space, input_text)
all_filtered_candidates = []
new_index_space = []
for init_candidates, context_word_similarity_scores, sentence_similarity_scores, masked_token_index in zip(init_candidates_list, all_context_word_similarity_scores, all_sentence_similarity_scores, index_space):
filtered_candidates = []
for idx, candidate in enumerate(init_candidates):
global_word_similarity_score = self.global_word_sim(tokens[masked_token_index], candidate)
word_similarity_score = self.lamda*context_word_similarity_scores[idx]+(1-self.lamda)*global_word_similarity_score
if word_similarity_score >= tau_word and sentence_similarity_scores[idx] >= self.tau_sent:
filtered_candidates.append((candidate, word_similarity_score))
if len(filtered_candidates) >= 1:
all_filtered_candidates.append(filtered_candidates)
new_index_space.append(masked_token_index)
return all_filtered_candidates, new_index_space
def get_candidate_encodings(self, tokens, enhanced_candidates, index_space):
best_candidates = []
new_index_space = []
for init_candidates, masked_token_index in zip(enhanced_candidates, index_space):
filtered_candidates = []
for idx, candidate in enumerate(init_candidates):
if masked_token_index-1 in new_index_space:
bit = binary_encoding_function(best_candidates[-1]+candidate[0])
else:
bit = binary_encoding_function(tokens[masked_token_index-1]+candidate[0])
if bit==1:
filtered_candidates.append(candidate)
# Sort the candidates based on their scores
filtered_candidates = sorted(filtered_candidates, key=lambda x: x[1], reverse=True)
if len(filtered_candidates) >= 1:
best_candidates.append(filtered_candidates[0][0])
new_index_space.append(masked_token_index)
return best_candidates, new_index_space
def watermark_embed(self,text,tau_word):
input_text = text
# Tokenize the input text
tokens = self.tokenizer.tokenize(input_text)
tokens = ['[CLS]'] + tokens + ['[SEP]']
masked_tokens=tokens.copy()
start_index = 1
end_index = len(tokens) - 1
index_space = []
for masked_token_index in range(start_index+1, end_index-1):
binary_encoding = binary_encoding_function(tokens[masked_token_index - 1] + tokens[masked_token_index])
if binary_encoding == 1 and masked_token_index-1 not in index_space:
continue
if not self.pos_filter(tokens,masked_token_index,input_text):
continue
index_space.append(masked_token_index)
if len(index_space)==0:
return text
init_candidates, new_index_space = self.candidates_gen(tokens,index_space,input_text, 8, 0)
if len(new_index_space)==0:
return text
enhanced_candidates, new_index_space = self.filter_candidates(init_candidates,tokens,new_index_space,input_text,tau_word)
enhanced_candidates, new_index_space = self.get_candidate_encodings(tokens, enhanced_candidates, new_index_space)
for init_candidate, masked_token_index in zip(enhanced_candidates, new_index_space):
tokens[masked_token_index] = init_candidate
watermarked_text = self.tokenizer.convert_tokens_to_string(tokens[1:-1])
if self.language == 'Chinese':
watermarked_text = re.sub(r'(?<=[\u4e00-\u9fff])\s+(?=[\u4e00-\u9fff,。?!、:])|(?<=[\u4e00-\u9fff,。?!、:])\s+(?=[\u4e00-\u9fff])', '', watermarked_text)
return watermarked_text
def embed(self, ori_text, tau_word):
sents = self.sent_tokenize(ori_text)
sents = [s for s in sents if s.strip()]
num_sents = len(sents)
watermarked_text = ''
for i in range(0, num_sents, 2):
if i+1 < num_sents:
sent_pair = sents[i] + sents[i+1]
else:
sent_pair = sents[i]
# keywords = jieba.analyse.extract_tags(sent_pair, topK=5, withWeight=False)
if len(watermarked_text) == 0:
watermarked_text = self.watermark_embed(sent_pair, tau_word)
else:
watermarked_text = watermarked_text + self.watermark_embed(sent_pair, tau_word)
if len(self.get_encodings_fast(ori_text)) == 0:
# print(ori_text)
return ''
return watermarked_text
def get_encodings_fast(self,text):
sents = self.sent_tokenize(text)
sents = [s for s in sents if s.strip()]
num_sents = len(sents)
encodings = []
for i in range(0, num_sents, 2):
if i+1 < num_sents:
sent_pair = sents[i] + sents[i+1]
else:
sent_pair = sents[i]
tokens = self.tokenizer.tokenize(sent_pair)
for index in range(1,len(tokens)-1):
if not self.pos_filter(tokens,index,text):
continue
bit = binary_encoding_function(tokens[index-1]+tokens[index])
encodings.append(bit)
return encodings
def watermark_detector_fast(self, text,alpha=0.05):
p = 0.5
encodings = self.get_encodings_fast(text)
n = len(encodings)
ones = sum(encodings)
if n == 0:
z = 0
else:
z = (ones - p * n) / (n * p * (1 - p)) ** 0.5
threshold = norm.ppf(1 - alpha, loc=0, scale=1)
p_value = norm.sf(z)
# p_value = norm.sf(abs(z)) * 2
is_watermark = z >= threshold
return is_watermark, p_value, n, ones, z
def get_encodings_precise(self, text, tau_word):
# pdb.set_trace()
sents = self.sent_tokenize(text)
sents = [s for s in sents if s.strip()]
num_sents = len(sents)
encodings = []
for i in range(0, num_sents, 2):
if i+1 < num_sents:
sent_pair = sents[i] + sents[i+1]
else:
sent_pair = sents[i]
tokens = self.tokenizer.tokenize(sent_pair)
tokens = ['[CLS]'] + tokens + ['[SEP]']
masked_tokens=tokens.copy()
start_index = 1
end_index = len(tokens) - 1
index_space = []
for masked_token_index in range(start_index+1, end_index-1):
if not self.pos_filter(tokens,masked_token_index,sent_pair):
continue
index_space.append(masked_token_index)
if len(index_space)==0:
continue
init_candidates, new_index_space = self.candidates_gen(tokens,index_space,sent_pair, 8, 0)
enhanced_candidates, new_index_space = self.filter_candidates(init_candidates,tokens,new_index_space,sent_pair,tau_word)
# pdb.set_trace()
for j,idx in enumerate(new_index_space):
if len(enhanced_candidates[j])>1:
bit = binary_encoding_function(tokens[idx-1]+tokens[idx])
encodings.append(bit)
return encodings
def watermark_detector_precise(self,text,tau_word,alpha=0.05):
p = 0.5
encodings = self.get_encodings_precise(text,tau_word)
n = len(encodings)
ones = sum(encodings)
if n == 0:
z = 0
else:
z = (ones - p * n) / (n * p * (1 - p)) ** 0.5
threshold = norm.ppf(1 - alpha, loc=0, scale=1)
p_value = norm.sf(z)
is_watermark = z >= threshold
return is_watermark, p_value, n, ones, z