Snearec commited on
Commit
092313a
·
1 Parent(s): 859f18b

Upload 4 files

Browse files
Files changed (4) hide show
  1. README.md +6 -7
  2. app.py +155 -0
  3. gitattributes.txt +29 -0
  4. requirements.txt +7 -0
README.md CHANGED
@@ -1,13 +1,12 @@
1
  ---
2
- title: WeedDetector
3
- emoji: 🏢
4
- colorFrom: red
5
- colorTo: yellow
6
  sdk: gradio
7
- sdk_version: 3.34.0
8
  app_file: app.py
9
  pinned: false
10
- license: openrail
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Object Detection With Detr Yolos
3
+ emoji: 😻
4
+ colorFrom: gray
5
+ colorTo: indigo
6
  sdk: gradio
7
+ sdk_version: 3.0.9
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
app.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import gradio as gr
3
+ import matplotlib.pyplot as plt
4
+ import requests, validators
5
+ import torch
6
+ import pathlib
7
+ from PIL import Image
8
+ from transformers import AutoFeatureExtractor, DetrForObjectDetection, YolosForObjectDetection
9
+
10
+ import os
11
+
12
+ # colors for visualization
13
+ COLORS = [
14
+ [0.000, 0.447, 0.741],
15
+ [0.850, 0.325, 0.098],
16
+ [0.929, 0.694, 0.125],
17
+ [0.494, 0.184, 0.556],
18
+ [0.466, 0.674, 0.188],
19
+ [0.301, 0.745, 0.933]
20
+ ]
21
+
22
+ def make_prediction(img, feature_extractor, model):
23
+ inputs = feature_extractor(img, return_tensors="pt")
24
+ outputs = model(**inputs)
25
+ img_size = torch.tensor([tuple(reversed(img.size))])
26
+ processed_outputs = feature_extractor.post_process(outputs, img_size)
27
+ return processed_outputs[0]
28
+
29
+ def fig2img(fig):
30
+ buf = io.BytesIO()
31
+ fig.savefig(buf)
32
+ buf.seek(0)
33
+ img = Image.open(buf)
34
+ return img
35
+
36
+
37
+ def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
38
+ keep = output_dict["scores"] > threshold
39
+ boxes = output_dict["boxes"][keep].tolist()
40
+ scores = output_dict["scores"][keep].tolist()
41
+ labels = output_dict["labels"][keep].tolist()
42
+ if id2label is not None:
43
+ labels = [id2label[x] for x in labels]
44
+
45
+ plt.figure(figsize=(16, 10))
46
+ plt.imshow(pil_img)
47
+ ax = plt.gca()
48
+ colors = COLORS * 100
49
+ for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
50
+ ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
51
+ ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
52
+ plt.axis("off")
53
+ return fig2img(plt.gcf())
54
+
55
+ def detect_objects(model_name,url_input,image_input,threshold):
56
+
57
+ #Extract model and feature extractor
58
+ feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
59
+
60
+ if 'detr' in model_name:
61
+
62
+ model = DetrForObjectDetection.from_pretrained(model_name)
63
+
64
+ elif 'yolos' in model_name:
65
+
66
+ model = YolosForObjectDetection.from_pretrained(model_name)
67
+
68
+ if validators.url(url_input):
69
+ image = Image.open(requests.get(url_input, stream=True).raw)
70
+
71
+ elif image_input:
72
+ image = image_input
73
+
74
+ #Make prediction
75
+ processed_outputs = make_prediction(image, feature_extractor, model)
76
+
77
+ #Visualize prediction
78
+ viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
79
+
80
+ return viz_img
81
+
82
+ def set_example_image(example: list) -> dict:
83
+ return gr.Image.update(value=example[0])
84
+
85
+ def set_example_url(example: list) -> dict:
86
+ return gr.Textbox.update(value=example[0])
87
+
88
+
89
+ title = """<h1 id="title">Object Detection App with DETR and YOLOS</h1>"""
90
+
91
+ description = """
92
+ Links to HuggingFace Models:
93
+
94
+ - [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
95
+ - [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)
96
+ - [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small)
97
+ - [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny)
98
+
99
+ """
100
+
101
+ models = ["facebook/detr-resnet-50","facebook/detr-resnet-101",'hustvl/yolos-small','hustvl/yolos-tiny']
102
+ urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]
103
+
104
+ twitter_link = """
105
+ [![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
106
+ """
107
+
108
+ css = '''
109
+ h1#title {
110
+ text-align: center;
111
+ }
112
+ '''
113
+ demo = gr.Blocks(css=css)
114
+
115
+ with demo:
116
+ gr.Markdown(title)
117
+ gr.Markdown(description)
118
+ gr.Markdown(twitter_link)
119
+ options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
120
+ slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold')
121
+
122
+ with gr.Tabs():
123
+ with gr.TabItem('Image URL'):
124
+ with gr.Row():
125
+ url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
126
+ img_output_from_url = gr.Image(shape=(650,650))
127
+
128
+ with gr.Row():
129
+ example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls])
130
+
131
+ url_but = gr.Button('Detect')
132
+
133
+ with gr.TabItem('Image Upload'):
134
+ with gr.Row():
135
+ img_input = gr.Image(type='pil')
136
+ img_output_from_upload= gr.Image(shape=(650,650))
137
+
138
+ with gr.Row():
139
+ example_images = gr.Dataset(components=[img_input],
140
+ samples=[[path.as_posix()]
141
+ for path in sorted(pathlib.Path('images').rglob('*.JPG'))])
142
+
143
+ img_but = gr.Button('Detect')
144
+
145
+
146
+ url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
147
+ img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
148
+ example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
149
+ example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input])
150
+
151
+
152
+ gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-object-detection-with-detr-and-yolos)")
153
+
154
+
155
+ demo.launch(enable_queue=True)
gitattributes.txt ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ftz filter=lfs diff=lfs merge=lfs -text
6
+ *.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.h5 filter=lfs diff=lfs merge=lfs -text
8
+ *.joblib filter=lfs diff=lfs merge=lfs -text
9
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
+ *.model filter=lfs diff=lfs merge=lfs -text
11
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
12
+ *.onnx filter=lfs diff=lfs merge=lfs -text
13
+ *.ot filter=lfs diff=lfs merge=lfs -text
14
+ *.parquet filter=lfs diff=lfs merge=lfs -text
15
+ *.pb filter=lfs diff=lfs merge=lfs -text
16
+ *.pt filter=lfs diff=lfs merge=lfs -text
17
+ *.pth filter=lfs diff=lfs merge=lfs -text
18
+ *.rar filter=lfs diff=lfs merge=lfs -text
19
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
20
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
21
+ *.tflite filter=lfs diff=lfs merge=lfs -text
22
+ *.tgz filter=lfs diff=lfs merge=lfs -text
23
+ *.wasm filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ IMG_5205.JPG filter=lfs diff=lfs merge=lfs -text
29
+ IMG_5204.JPG filter=lfs diff=lfs merge=lfs -text
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ beautifulsoup4==4.9.3
2
+ bs4==0.0.1
3
+ requests-file==1.5.1
4
+ torch==1.10.1
5
+ git+https://github.com/huggingface/transformers.git
6
+ validators==0.18.2
7
+ timm==0.5.4