Spaces:
Runtime error
Runtime error
File size: 5,787 Bytes
5bd8d5b fe42dd8 5bd8d5b 61d1727 5bd8d5b af5888a ec0b3c1 af5888a 7761031 9fdc53a 5bd8d5b ec0b3c1 5bd8d5b af5888a 5bd8d5b 16d828f e4d42b3 9fdc53a 5bd8d5b af5888a 61d1727 5bd8d5b 9fdc53a 7761031 af5888a 5bd8d5b ec0b3c1 af5888a 7761031 af5888a aa009f7 5bd8d5b af5888a 7e41ba8 af5888a 7e41ba8 7761031 af5888a 5bd8d5b 7761031 16d828f 7761031 16d828f 29646bb 16d828f 5bd8d5b 7761031 af5888a 7761031 af5888a 7761031 aa009f7 af5888a aa009f7 af5888a aa009f7 5bd8d5b 9fdc53a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
from typing import Optional
import gradio as gr
import numpy as np
import supervision as sv
import torch
from PIL import Image
from gradio_image_prompter import ImagePrompter
from utils.models import load_models, CHECKPOINT_NAMES, MODE_NAMES, \
MASK_GENERATION_MODE, BOX_PROMPT_MODE
import spaces
MARKDOWN = """
# Segment Anything Model 2 🔥
<div>
<a href="https://github.com/facebookresearch/segment-anything-2">
<img src="https://badges.aleen42.com/src/github.svg" alt="GitHub" style="display:inline-block;">
</a>
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-segment-images-with-sam-2.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab" style="display:inline-block;">
</a>
<a href="https://blog.roboflow.com/what-is-segment-anything-2/">
<img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="Roboflow" style="display:inline-block;">
</a>
<a href="https://www.youtube.com/watch?v=Dv003fTyO-Y">
<img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="display:inline-block;">
</a>
</div>
Segment Anything Model 2 (SAM 2) is a foundation model designed to address promptable
visual segmentation in both images and videos. **Video segmentation will be available
soon.**
"""
EXAMPLES = [
["tiny", MASK_GENERATION_MODE, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None],
["tiny", MASK_GENERATION_MODE, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", None],
["tiny", MASK_GENERATION_MODE, "https://media.roboflow.com/notebooks/examples/dog-4.jpeg", None],
]
DEVICE = torch.device('cuda')
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
IMAGE_PREDICTORS, MASK_GENERATORS = load_models(device=DEVICE)
@spaces.GPU
@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process(
checkpoint_dropdown,
mode_dropdown,
image_input,
image_prompter_input
) -> Optional[Image.Image]:
if mode_dropdown == BOX_PROMPT_MODE:
image_input = image_prompter_input["image"]
prompt = image_prompter_input["points"]
if len(prompt) == 0:
return image_input
model = IMAGE_PREDICTORS[checkpoint_dropdown]
image = np.array(image_input.convert("RGB"))
box = np.array([[x1, y1, x2, y2] for x1, y1, _, x2, y2, _ in prompt])
model.set_image(image)
masks, _, _ = model.predict(box=box, multimask_output=False)
# dirty fix; remove this later
if len(masks.shape) == 4:
masks = np.squeeze(masks)
detections = sv.Detections(
xyxy=sv.mask_to_xyxy(masks=masks),
mask=masks.astype(bool)
)
return MASK_ANNOTATOR.annotate(image_input, detections)
if mode_dropdown == MASK_GENERATION_MODE:
model = MASK_GENERATORS[checkpoint_dropdown]
image = np.array(image_input.convert("RGB"))
result = model.generate(image)
detections = sv.Detections.from_sam(result)
return MASK_ANNOTATOR.annotate(image_input, detections)
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
checkpoint_dropdown_component = gr.Dropdown(
choices=CHECKPOINT_NAMES,
value=CHECKPOINT_NAMES[0],
label="Checkpoint", info="Select a SAM2 checkpoint to use.",
interactive=True
)
mode_dropdown_component = gr.Dropdown(
choices=MODE_NAMES,
value=MODE_NAMES[0],
label="Mode",
info="Select a mode to use. `box prompt` if you want to generate masks for "
"selected objects, `mask generation` if you want to generate masks "
"for the whole image.",
interactive=True
)
with gr.Row():
with gr.Column():
image_input_component = gr.Image(
type='pil', label='Upload image')
image_prompter_input_component = ImagePrompter(
type='pil', label='Image prompt', visible=False)
submit_button_component = gr.Button(
value='Submit', variant='primary')
with gr.Column():
image_output_component = gr.Image(type='pil', label='Image Output')
with gr.Row():
gr.Examples(
fn=process,
examples=EXAMPLES,
inputs=[
checkpoint_dropdown_component,
mode_dropdown_component,
image_input_component,
image_prompter_input_component,
],
outputs=[image_output_component],
cache_examples=False,
run_on_click=True
)
def on_mode_dropdown_change(text):
return [
gr.Image(visible=text == MASK_GENERATION_MODE),
ImagePrompter(visible=text == BOX_PROMPT_MODE)
]
mode_dropdown_component.change(
on_mode_dropdown_change,
inputs=[mode_dropdown_component],
outputs=[
image_input_component,
image_prompter_input_component
]
)
submit_button_component.click(
fn=process,
inputs=[
checkpoint_dropdown_component,
mode_dropdown_component,
image_input_component,
image_prompter_input_component,
],
outputs=[image_output_component]
)
demo.launch(debug=False, show_error=True)
|