import os import gradio as gr from llama_cpp import Llama from huggingface_hub import hf_hub_download model = Llama( model_path=hf_hub_download( repo_id=os.environ.get("REPO_ID", "Lyte/LLaMA-O1-Supervised-1129-Q4_K_M-GGUF"), filename=os.environ.get("MODEL_FILE", "llama-o1-supervised-1129-q4_k_m.gguf"), ) ) DESCRIPTION = ''' # SimpleBerry/LLaMA-O1-Supervised-1129 | Duplicate the space and set it to private for faster & personal inference for free. SimpleBerry/LLaMA-O1-Supervised-1129: an experimental research model developed by the SimpleBerry. Focused on advancing AI reasoning capabilities. **To start a new chat**, click "clear" and start a new dialog. ''' LICENSE = """ --- MIT License --- """ template = "-10{content}\n01" def llama_o1_template(data): #query = data['query'] text = template.format(content=data) return text def generate_text(message, history, max_tokens=512, temperature=0.9, top_p=0.95): temp = "" input_texts = [llama_o1_template(message)] input_texts = [input_text.replace('<|end_of_text|>','') for input_text in input_texts] #print(f"input_texts[0]: {input_texts[0]}") inputs = model.tokenize(input_texts[0].encode('utf-8')) for token in model.generate(inputs, top_p=top_p, temp=temperature): #print(f"token: {token}") text = model.detokenize([token]) #print(f"text detok: {text}") temp += text.decode('utf-8') yield temp with gr.Blocks() as demo: gr.Markdown(DESCRIPTION) chatbot = gr.ChatInterface( generate_text, title="SimpleBerry/LLaMA-O1-Supervised-1129 | GGUF Demo", description="Edit Settings below if needed.", examples=[ ["How many r's are in the word strawberry?"], ['What is the most optimal way to do Test-Time Scaling?'], ['Explain to me how gravity works like I am 5!'], ], cache_examples=False, fill_height=True ) with gr.Accordion("Adjust Parameters", open=False): gr.Slider(minimum=1024, maximum=8192, value=2048, step=1, label="Max Tokens") gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature") gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.01, label="Top-p (nucleus sampling)") gr.Markdown(LICENSE) if __name__ == "__main__": demo.launch()