import spaces import os import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM from huggingface_hub import hf_hub_download, snapshot_download # Load the model and tokenizer from Hugging Face model_path = snapshot_download( repo_id=os.environ.get("REPO_ID", "SimpleBerry/LLaMA-O1-Supervised-1129") ) tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path,device_map='auto') DESCRIPTION = ''' # SimpleBerry/LLaMA-O1-Supervised-1129 | Duplicate the space and set it to private for faster & personal inference for free. SimpleBerry/LLaMA-O1-Supervised-1129: an experimental research model developed by the SimpleBerry. Focused on advancing AI reasoning capabilities. ## This Space was designed by Lyte/LLaMA-O1-Supervised-1129-GGUF, Many Thanks! **To start a new chat**, click "clear" and start a new dialogue. ''' LICENSE = """ --- MIT License --- """ template = "-10{content}\n01" def llama_o1_template(data): #query = data['query'] text = template.format(content=data) return text @spaces.GPU def generate_text(message, history, max_tokens=512, temperature=0.9, top_p=0.95): input_text = llama_o1_template(message) inputs = tokenizer(input_text, return_tensors="pt") # Generate the text with the model output = model.generate( **inputs, max_length=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, pad_token_id=tokenizer.eos_token_id, ) response = tokenizer.decode(output[0], skip_special_tokens=True) yield response with gr.Blocks() as demo: gr.Markdown(DESCRIPTION) chatbot = gr.ChatInterface( generate_text, title="SimpleBerry/LLaMA-O1-Supervised-1129 | GGUF Demo", description="Edit Settings below if needed.", examples=[ ["How many r's are in the word strawberry?"], ['If Diana needs to bike 10 miles to reach home and she can bike at a speed of 3 mph for two hours before getting tired, and then at a speed of 1 mph until she reaches home, how long will it take her to get home?'], ['Find the least odd prime factor of $2019^8+1$.'], ], cache_examples=False, fill_height=True ) with gr.Accordion("Adjust Parameters", open=False): gr.Slider(minimum=1024, maximum=8192, value=2048, step=1, label="Max Tokens") gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature") gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.01, label="Top-p (nucleus sampling)") gr.Markdown(LICENSE) if __name__ == "__main__": demo.launch()