jwu323's picture
Update app.py
c344902 verified
import os
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
model = Llama(
model_path=hf_hub_download(
repo_id=os.environ.get("REPO_ID", "SimpleBerry/LLaMA-O1-Supervised-1129-Q2_K-GGUF"),
filename=os.environ.get("MODEL_FILE", "LLaMA-O1-Supervised-1129-q2_k.gguf"),
)
)
DESCRIPTION = '''
# SimpleBerry/LLaMA-O1-Supervised-1129 | Duplicate the space and set it to private for faster & personal inference for free.
SimpleBerry/LLaMA-O1-Supervised-1129: an experimental research model developed by the SimpleBerry.
Focused on advancing AI reasoning capabilities.
## This Space was designed by Lyte/LLaMA-O1-Supervised-1129-GGUF, Many Thanks!
**To start a new chat**, click "clear" and start a new dialog.
'''
LICENSE = """
--- MIT License ---
"""
template = "<start_of_father_id>-1<end_of_father_id><start_of_local_id>0<end_of_local_id><start_of_thought><problem>{content}<end_of_thought><start_of_rating><positive_rating><end_of_rating>\n<start_of_father_id>0<end_of_father_id><start_of_local_id>1<end_of_local_id><start_of_thought><expansion>"
def llama_o1_template(data):
#query = data['query']
text = template.format(content=data)
return text
def generate_text(message, history, max_tokens=512, temperature=0.9, top_p=0.95):
temp = ""
input_texts = [llama_o1_template(message)]
input_texts = [input_text.replace('<|end_of_text|>','') for input_text in input_texts]
#print(f"input_texts[0]: {input_texts[0]}")
inputs = model.tokenize(input_texts[0].encode('utf-8'))
for token in model.generate(inputs, top_p=top_p, temp=temperature):
#print(f"token: {token}")
text = model.detokenize([token])
#print(f"text detok: {text}")
temp += text.decode('utf-8')
yield temp
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
chatbot = gr.ChatInterface(
generate_text,
title="SimpleBerry/LLaMA-O1-Supervised-1129 | GGUF Demo",
description="Edit Settings below if needed.",
examples=[
["How many r's are in the word strawberry?"],
['If Diana needs to bike 10 miles to reach home and she can bike at a speed of 3 mph for two hours before getting tired, and then at a speed of 1 mph until she reaches home, how long will it take her to get home?'],
['Find the least odd prime factor of $2019^8+1$.'],
],
cache_examples=False,
fill_height=True
)
with gr.Accordion("Adjust Parameters", open=False):
gr.Slider(minimum=128, maximum=8192, value=512, step=1, label="Max Tokens")
gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature")
gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.01, label="Top-p (nucleus sampling)")
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()
# # import spaces
# import os
# import gradio as gr
# from transformers import AutoTokenizer, AutoModelForCausalLM
# from huggingface_hub import hf_hub_download, snapshot_download
# import accelerate
# accelerator = accelerate.Accelerator()
# # Load the model and tokenizer from Hugging Face
# model_path = snapshot_download(
# repo_id=os.environ.get("REPO_ID", "SimpleBerry/LLaMA-O1-Supervised-1129")
# )
# tokenizer = AutoTokenizer.from_pretrained(model_path)
# model = AutoModelForCausalLM.from_pretrained(model_path,device_map='auto')
# DESCRIPTION = '''
# # SimpleBerry/LLaMA-O1-Supervised-1129 | Duplicate the space and set it to private for faster & personal inference for free.
# SimpleBerry/LLaMA-O1-Supervised-1129: an experimental research model developed by the SimpleBerry.
# Focused on advancing AI reasoning capabilities.
# ## This Space was designed by Lyte/LLaMA-O1-Supervised-1129-GGUF, Many Thanks!
# **To start a new chat**, click "clear" and start a new dialogue.
# '''
# LICENSE = """
# --- MIT License ---
# """
# template = "<start_of_father_id>-1<end_of_father_id><start_of_local_id>0<end_of_local_id><start_of_thought><problem>{content}<end_of_thought><start_of_rating><positive_rating><end_of_rating>\n<start_of_father_id>0<end_of_father_id><start_of_local_id>1<end_of_local_id><start_of_thought><expansion>"
# def llama_o1_template(data):
# #query = data['query']
# text = template.format(content=data)
# return text
# def format_response(response):
# response = response.replace('<start_of_father_id>','')
# response = response.replace('<end_of_father_id><start_of_local_id>','👉')
# response = response.replace('<end_of_local_id><start_of_thought>',', ')
# response = response.replace('<end_of_thought><start_of_rating>','')
# response = response.replace('<end_of_rating>','')
# response = response.replace('<positive_rating>','👍')
# response = response.replace('<negative_rating>','👎')
# # @spaces.GPU
# def generate_text(message, history, max_tokens=512, temperature=0.9, top_p=0.95):
# input_text = llama_o1_template(message)
# inputs = tokenizer(input_text, return_tensors="pt").to(accelerator.device)
# # Generate the text with the model
# output = model.generate(
# **inputs,
# max_length=max_tokens,
# temperature=temperature,
# top_p=top_p,
# do_sample=True,
# )
# response = tokenizer.decode(output[0], skip_special_tokens=False)
# yield response
# with gr.Blocks() as demo:
# gr.Markdown(DESCRIPTION)
# chatbot = gr.ChatInterface(
# generate_text,
# title="SimpleBerry/LLaMA-O1-Supervised-1129 | GGUF Demo",
# description="Edit Settings below if needed.",
# examples=[
# ["How many r's are in the word strawberry?"],
# ['If Diana needs to bike 10 miles to reach home and she can bike at a speed of 3 mph for two hours before getting tired, and then at a speed of 1 mph until she reaches home, how long will it take her to get home?'],
# ['Find the least odd prime factor of $2019^8+1$.'],
# ],
# cache_examples=True,
# fill_height=True,
# )
# with gr.Accordion("Adjust Parameters", open=False):
# gr.Slider(minimum=1024, maximum=8192, value=2048, step=1, label="Max Tokens")
# gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature")
# gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.01, label="Top-p (nucleus sampling)")
# gr.Markdown(LICENSE)
# if __name__ == "__main__":
# demo.launch()