import os | |
import gradio as gr | |
from llama_cpp import Llama | |
from huggingface_hub import hf_hub_download | |
model = Llama( | |
model_path=hf_hub_download( | |
repo_id=os.environ.get("REPO_ID", "SimpleBerry/LLaMA-O1-Supervised-1129-Q2_K-GGUF"), | |
filename=os.environ.get("MODEL_FILE", "LLaMA-O1-Supervised-1129-q2_k.gguf"), | |
) | |
) | |
DESCRIPTION = ''' | |
# SimpleBerry/LLaMA-O1-Supervised-1129 | Duplicate the space and set it to private for faster & personal inference for free. | |
SimpleBerry/LLaMA-O1-Supervised-1129: an experimental research model developed by the SimpleBerry. | |
Focused on advancing AI reasoning capabilities. | |
## This Space was designed by Lyte/LLaMA-O1-Supervised-1129-GGUF, Many Thanks! | |
**To start a new chat**, click "clear" and start a new dialog. | |
''' | |
LICENSE = """ | |
--- MIT License --- | |
""" | |
template = "<start_of_father_id>-1<end_of_father_id><start_of_local_id>0<end_of_local_id><start_of_thought><problem>{content}<end_of_thought><start_of_rating><positive_rating><end_of_rating>\n<start_of_father_id>0<end_of_father_id><start_of_local_id>1<end_of_local_id><start_of_thought><expansion>" | |
def llama_o1_template(data): | |
#query = data['query'] | |
text = template.format(content=data) | |
return text | |
def generate_text(message, history, max_tokens=512, temperature=0.9, top_p=0.95): | |
temp = "" | |
input_texts = [llama_o1_template(message)] | |
input_texts = [input_text.replace('<|end_of_text|>','') for input_text in input_texts] | |
#print(f"input_texts[0]: {input_texts[0]}") | |
inputs = model.tokenize(input_texts[0].encode('utf-8')) | |
for token in model.generate(inputs, top_p=top_p, temp=temperature): | |
#print(f"token: {token}") | |
text = model.detokenize([token]) | |
#print(f"text detok: {text}") | |
temp += text.decode('utf-8') | |
yield temp | |
with gr.Blocks() as demo: | |
gr.Markdown(DESCRIPTION) | |
chatbot = gr.ChatInterface( | |
generate_text, | |
title="SimpleBerry/LLaMA-O1-Supervised-1129 | GGUF Demo", | |
description="Edit Settings below if needed.", | |
examples=[ | |
["How many r's are in the word strawberry?"], | |
['If Diana needs to bike 10 miles to reach home and she can bike at a speed of 3 mph for two hours before getting tired, and then at a speed of 1 mph until she reaches home, how long will it take her to get home?'], | |
['Find the least odd prime factor of $2019^8+1$.'], | |
], | |
cache_examples=False, | |
fill_height=True | |
) | |
with gr.Accordion("Adjust Parameters", open=False): | |
gr.Slider(minimum=128, maximum=8192, value=512, step=1, label="Max Tokens") | |
gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature") | |
gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.01, label="Top-p (nucleus sampling)") | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.launch() | |
# # import spaces | |
# import os | |
# import gradio as gr | |
# from transformers import AutoTokenizer, AutoModelForCausalLM | |
# from huggingface_hub import hf_hub_download, snapshot_download | |
# import accelerate | |
# accelerator = accelerate.Accelerator() | |
# # Load the model and tokenizer from Hugging Face | |
# model_path = snapshot_download( | |
# repo_id=os.environ.get("REPO_ID", "SimpleBerry/LLaMA-O1-Supervised-1129") | |
# ) | |
# tokenizer = AutoTokenizer.from_pretrained(model_path) | |
# model = AutoModelForCausalLM.from_pretrained(model_path,device_map='auto') | |
# DESCRIPTION = ''' | |
# # SimpleBerry/LLaMA-O1-Supervised-1129 | Duplicate the space and set it to private for faster & personal inference for free. | |
# SimpleBerry/LLaMA-O1-Supervised-1129: an experimental research model developed by the SimpleBerry. | |
# Focused on advancing AI reasoning capabilities. | |
# ## This Space was designed by Lyte/LLaMA-O1-Supervised-1129-GGUF, Many Thanks! | |
# **To start a new chat**, click "clear" and start a new dialogue. | |
# ''' | |
# LICENSE = """ | |
# --- MIT License --- | |
# """ | |
# template = "<start_of_father_id>-1<end_of_father_id><start_of_local_id>0<end_of_local_id><start_of_thought><problem>{content}<end_of_thought><start_of_rating><positive_rating><end_of_rating>\n<start_of_father_id>0<end_of_father_id><start_of_local_id>1<end_of_local_id><start_of_thought><expansion>" | |
# def llama_o1_template(data): | |
# #query = data['query'] | |
# text = template.format(content=data) | |
# return text | |
# def format_response(response): | |
# response = response.replace('<start_of_father_id>','') | |
# response = response.replace('<end_of_father_id><start_of_local_id>','👉') | |
# response = response.replace('<end_of_local_id><start_of_thought>',', ') | |
# response = response.replace('<end_of_thought><start_of_rating>','') | |
# response = response.replace('<end_of_rating>','') | |
# response = response.replace('<positive_rating>','👍') | |
# response = response.replace('<negative_rating>','👎') | |
# # @spaces.GPU | |
# def generate_text(message, history, max_tokens=512, temperature=0.9, top_p=0.95): | |
# input_text = llama_o1_template(message) | |
# inputs = tokenizer(input_text, return_tensors="pt").to(accelerator.device) | |
# # Generate the text with the model | |
# output = model.generate( | |
# **inputs, | |
# max_length=max_tokens, | |
# temperature=temperature, | |
# top_p=top_p, | |
# do_sample=True, | |
# ) | |
# response = tokenizer.decode(output[0], skip_special_tokens=False) | |
# yield response | |
# with gr.Blocks() as demo: | |
# gr.Markdown(DESCRIPTION) | |
# chatbot = gr.ChatInterface( | |
# generate_text, | |
# title="SimpleBerry/LLaMA-O1-Supervised-1129 | GGUF Demo", | |
# description="Edit Settings below if needed.", | |
# examples=[ | |
# ["How many r's are in the word strawberry?"], | |
# ['If Diana needs to bike 10 miles to reach home and she can bike at a speed of 3 mph for two hours before getting tired, and then at a speed of 1 mph until she reaches home, how long will it take her to get home?'], | |
# ['Find the least odd prime factor of $2019^8+1$.'], | |
# ], | |
# cache_examples=True, | |
# fill_height=True, | |
# ) | |
# with gr.Accordion("Adjust Parameters", open=False): | |
# gr.Slider(minimum=1024, maximum=8192, value=2048, step=1, label="Max Tokens") | |
# gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature") | |
# gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.01, label="Top-p (nucleus sampling)") | |
# gr.Markdown(LICENSE) | |
# if __name__ == "__main__": | |
# demo.launch() |