File size: 2,967 Bytes
7666411 fc46f2c baf6fc1 0aa2267 fc46f2c 7666411 c21c837 fc46f2c baf6fc1 7666411 fc46f2c 3c59616 fc46f2c 3293bdb fc46f2c 3c59616 fc46f2c 3c59616 e1a9476 fc46f2c 7666411 fc46f2c 7666411 3c59616 fc46f2c 3c59616 fc46f2c 7271565 fc46f2c 3c59616 fc46f2c a965d37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import spaces
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import hf_hub_download, snapshot_download
# Load the model and tokenizer from Hugging Face
model_path = snapshot_download(
repo_id=os.environ.get("REPO_ID", "SimpleBerry/LLaMA-O1-Supervised-1129")
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path,device_map='auto')
DESCRIPTION = '''
# SimpleBerry/LLaMA-O1-Supervised-1129 | Duplicate the space and set it to private for faster & personal inference for free.
SimpleBerry/LLaMA-O1-Supervised-1129: an experimental research model developed by the SimpleBerry.
Focused on advancing AI reasoning capabilities.
## This Space was designed by Lyte/LLaMA-O1-Supervised-1129-GGUF, Many Thanks!
**To start a new chat**, click "clear" and start a new dialogue.
'''
LICENSE = """
--- MIT License ---
"""
template = "<start_of_father_id>-1<end_of_father_id><start_of_local_id>0<end_of_local_id><start_of_thought><problem>{content}<end_of_thought><start_of_rating><positive_rating><end_of_rating>\n<start_of_father_id>0<end_of_father_id><start_of_local_id>1<end_of_local_id><start_of_thought><expansion>"
def llama_o1_template(data):
#query = data['query']
text = template.format(content=data)
return text
@spaces.GPU
def generate_text(message, history, max_tokens=512, temperature=0.9, top_p=0.95):
input_text = llama_o1_template(message)
inputs = tokenizer(input_text, return_tensors="pt")
# Generate the text with the model
output = model.generate(
**inputs,
max_length=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(output[0], skip_special_tokens=True)
yield response
with gr.Blocks() as demo:
gr.Markdown(DESCRIPTION)
chatbot = gr.ChatInterface(
generate_text,
title="SimpleBerry/LLaMA-O1-Supervised-1129 | GGUF Demo",
description="Edit Settings below if needed.",
examples=[
["How many r's are in the word strawberry?"],
['If Diana needs to bike 10 miles to reach home and she can bike at a speed of 3 mph for two hours before getting tired, and then at a speed of 1 mph until she reaches home, how long will it take her to get home?'],
['Find the least odd prime factor of $2019^8+1$.'],
],
cache_examples=False,
fill_height=True
)
with gr.Accordion("Adjust Parameters", open=False):
gr.Slider(minimum=1024, maximum=8192, value=2048, step=1, label="Max Tokens")
gr.Slider(minimum=0.1, maximum=1.5, value=0.7, step=0.1, label="Temperature")
gr.Slider(minimum=0.05, maximum=1.0, value=0.95, step=0.01, label="Top-p (nucleus sampling)")
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()
|