Spaces:
Runtime error
Runtime error
sanjanatule
commited on
Commit
·
d3369cb
1
Parent(s):
5d0f08d
Upload utils.py
Browse files
utils.py
CHANGED
@@ -1,24 +1,34 @@
|
|
|
|
1 |
import torch
|
2 |
from torch import nn
|
3 |
import lightning.pytorch as pl
|
4 |
from torch.nn import functional as F
|
5 |
|
|
|
6 |
chars = ['\n', ' ', '!', '$', '&', "'", ',', '-', '.', '3', ':', ';', '?', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
|
7 |
-
|
8 |
vocab_size = len(chars)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
block_size = 32
|
10 |
-
n_embd
|
11 |
-
n_head
|
12 |
-
n_layer
|
13 |
-
dropout
|
14 |
-
device
|
|
|
15 |
|
16 |
class Head(nn.Module):
|
17 |
""" one head of self-attention """
|
18 |
|
19 |
def __init__(self, head_size):
|
20 |
super().__init__()
|
21 |
-
self.key
|
22 |
self.query = nn.Linear(n_embd, head_size, bias=False)
|
23 |
self.value = nn.Linear(n_embd, head_size, bias=False)
|
24 |
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
|
@@ -44,8 +54,8 @@ class MultiHeadAttention(nn.Module):
|
|
44 |
|
45 |
def __init__(self, num_heads, head_size):
|
46 |
super().__init__()
|
47 |
-
self.heads
|
48 |
-
self.proj
|
49 |
self.dropout = nn.Dropout(dropout)
|
50 |
|
51 |
def forward(self, x):
|
@@ -75,10 +85,10 @@ class Block(nn.Module):
|
|
75 |
# n_embd: embedding dimension, n_head: the number of heads we'd like
|
76 |
super().__init__()
|
77 |
head_size = n_embd // n_head
|
78 |
-
self.sa
|
79 |
self.ffwd = FeedFoward(n_embd)
|
80 |
-
self.ln1
|
81 |
-
self.ln2
|
82 |
|
83 |
def forward(self, x):
|
84 |
x = x + self.sa(self.ln1(x))
|
|
|
1 |
+
|
2 |
import torch
|
3 |
from torch import nn
|
4 |
import lightning.pytorch as pl
|
5 |
from torch.nn import functional as F
|
6 |
|
7 |
+
# encoding
|
8 |
chars = ['\n', ' ', '!', '$', '&', "'", ',', '-', '.', '3', ':', ';', '?', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
|
|
|
9 |
vocab_size = len(chars)
|
10 |
+
stoi = { ch:i for i,ch in enumerate(chars) }
|
11 |
+
itos = { i:ch for i,ch in enumerate(chars) }
|
12 |
+
|
13 |
+
# encode / decode function
|
14 |
+
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
|
15 |
+
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
|
16 |
+
|
17 |
+
# model config
|
18 |
block_size = 32
|
19 |
+
n_embd = 128
|
20 |
+
n_head = 4
|
21 |
+
n_layer = 8
|
22 |
+
dropout = 0.1
|
23 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
24 |
+
learning_rate = 1e-3
|
25 |
|
26 |
class Head(nn.Module):
|
27 |
""" one head of self-attention """
|
28 |
|
29 |
def __init__(self, head_size):
|
30 |
super().__init__()
|
31 |
+
self.key = nn.Linear(n_embd, head_size, bias=False)
|
32 |
self.query = nn.Linear(n_embd, head_size, bias=False)
|
33 |
self.value = nn.Linear(n_embd, head_size, bias=False)
|
34 |
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
|
|
|
54 |
|
55 |
def __init__(self, num_heads, head_size):
|
56 |
super().__init__()
|
57 |
+
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
|
58 |
+
self.proj = nn.Linear(n_embd, n_embd)
|
59 |
self.dropout = nn.Dropout(dropout)
|
60 |
|
61 |
def forward(self, x):
|
|
|
85 |
# n_embd: embedding dimension, n_head: the number of heads we'd like
|
86 |
super().__init__()
|
87 |
head_size = n_embd // n_head
|
88 |
+
self.sa = MultiHeadAttention(n_head, head_size)
|
89 |
self.ffwd = FeedFoward(n_embd)
|
90 |
+
self.ln1 = nn.LayerNorm(n_embd)
|
91 |
+
self.ln2 = nn.LayerNorm(n_embd)
|
92 |
|
93 |
def forward(self, x):
|
94 |
x = x + self.sa(self.ln1(x))
|